Black Oil, Heavy Oil and Tar in One Oil Column Understood by Simple Asphaltene Nanoscience

Author:

Seifert Douglas J.1,Zeybek Murat2,Dong Chengli2,Zuo Julian Y.2,Mullins Oliver C.2

Affiliation:

1. Saudi Aramco

2. Schlumberger

Abstract

Abstract A Jurrasic oilfield in Saudi Arabia is characterized by black oil in the crest and with mobile heavy oil underneath and all underlain by a tar mat at the oil-water contact. The viscosities in the black oil section of the column are fairly similar and are quite manageable from a production standpoint. In contrast, the mobile heavy oil section of the column contains a large continuous increase in asphaltene content with increasing depth extending to the tar mat. The tar shows very high asphaltene content but not monotonically increasing with depth. Because viscosity depends exponentially on asphaltene content in these oils, the observed viscosity varies from several to ~ 1000 centipoise in the mobile heavy oil and increases to far greater viscosities in the tar mat. Both the excessive viscosity of the heavy oil and the existence of the tar mat represent major, distinct challenges in oil production. Conventional PVT modeling of this oil column grossly fails to account for these observations. Indeed, the very large height in this oil column represents a stringent challenge for any corresponding fluid model. A simple new formalism to characterize the asphaltene nanoscience in crude oils, the Yen-Mullins model, has enabled the industry's first predictive equation of state (EoS) for asphaltene gradients, the Flory-Huggins-Zuo (FHZ) EoS. For low GOR oils such as those in this field, the FHZ EoS reduces to the simple gravity term. Robust application of the FHZ EoS employing the Yen-Mullins model accounts for the major property variations in the oil column and by extension the tar mat as well. Moreover, as these crude oils are largely equilibrated throughout the field, reservoir connectivity is indicated in this field. This novel asphaltene science is dramatically improving understanding of important constraints on oil production in oil reservoirs.

Publisher

SPE

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3