History Matching of Stimulated Reservoir Volume of Shale-Gas Reservoirs Using an Iterative Ensemble Smoother

Author:

Chang Haibin1,Zhang Dongxiao1

Affiliation:

1. Peking University

Abstract

Summary Economic production from shale-gas reservoirs typically relies on the drilling of horizontal wells and hydraulic fracturing in multiple stages. In addition to the creation of hydraulic fractures, hydraulic-fracturing treatment can also reopen existing natural fractures, which can create a complex-fracture network. The area that is covered by the fracture network is usually termed the stimulated reservoir volume (SRV), and the spatial extent and properties of the SRV are crucial for shale-gas-production behavior. In this work, we propose a method for history matching of the SRV of shale-gas reservoirs using production data. For each hydraulic-fracturing stage, the fracture network is parameterized with one major fracture of the hydraulic fractures and the SRV that represents minor hydraulic fractures and reopened natural fractures. The major fracture is modeled explicitly, whereas the SRV is modeled by the dual-permeability/dual-porosity (DP/DP) model. Moreover, the spatial extent of the SRV is parameterized by the level-set-function values on a predefined representing-node system. After parameterization, an iterative ensemble smoother is used to perform history matching. Both single-stage-fracturing cases and multistage-fracturing cases are set up to test the performance of the proposed method. Numerical results demonstrate that by use of the proposed method, the SRV can be well-recognized by assimilating production data.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3