Simulation of Multiphase Fluid-Hammer Effects during Well Shut-In and Opening

Author:

Han Guoqing1,Ling Kegang2,Khor Siew Hiang3,Zhang He3,Company Ryder Scott3,Thakur Ram Kinkar3

Affiliation:

1. China University of Petroleum

2. University of North Dakota

3. Schlumberger

Abstract

Abstract In this study, a transient multiphase simulator has been used to characterize the fluid-hammer effects of well shut-in and start-up on the coupled subsurface and surface systems. The original work was performed by applying sensitivity analysis on a typical production system that includes well completion, wellbore, downhole equipment like packer etc., and the associated surface equipment like flowline, riser and valves. The data used in the study was taken from the published literature to summarize the general course of key factors that worsen the fluid-hammer effects. Fluid-hammer is also known as water hammer, a shock wave produced by the sudden stoppage or reduction in fluid flow. Field operations such as pressure transient analysis, facility maintenance and workover require well shut-in process. For a typical production system, the resulted sudden rises in pressure can be critical because it has direct impact on equipment including unsetting of packer and may also cause possible damages to instrumentations. This paper provides estimates of the typical ratio of transient shock in pressure and flowrate over pre-condition values, and the duration of such pressure shocks. It also proposes the best location of the shut-in valve and the length of flowline to reduce the fluid-hammer effects. This is a pioneering approach to integrate multiphase flow modeling of transient fluid-hammer effects, targeting flow assurance issues. This approach also can be applied to surface facility design and served as guidance in field operation to avoid hydrocarbon leaks.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the influence of production fluctuation of high-production gas well on service security of tubing string;Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles;2021

2. Wellbore annulus water hammer pressure prediction based on transient multi-phase flow characteristics;Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3