Accurate Evaluation of Marcellus Shale Petrophysical Properties

Author:

Elsaig M..1,Aminian K..1,Ameri S..1,Zamirian M..1

Affiliation:

1. West Virginia University

Abstract

Abstract The advances in hydraulic fracturing and horizontal well technology have unlocked considerable natural gas reserves contained in the shale formations. Reliable values of the shale key petrophysical properties including permeability and porosity are necessary to estimate the original gas-in-place, predict the production rates, and optimize the hydraulic fracturing treatments. The quantification of the key shale petrophysical properties however remain challenging due to complex nature of the shale foramtions. Unsteady state techniques are commonly used to estimate permeability of the shale samples because the shales typically have permeability values in nano-Darcy range. The measured permeability values by these techniques however suffer from a large margin of uncertainty and reproducibility problems. Furthermore, the unsteady state measurements cannot be performed under the reservoir stress and temperature conditions. In this study, a fully automated laboratory set-up, which has been designed and constructed for the evaluation of the ultra-low permeability petrophysical properties under the reservoir conditions, was utilized to measure the porosity and permeability of the Marcellus shale core plugs. The core plugs were obtained from a vertical well drilled specifically for the laboratory research and other scientific purposes (science well) on the site of the Marcellus Shale Energy and Environment Laboratory (MSEEL). MSEEL is a field site and dedicated laboratory in the Marcellus Shale unconventional production region of north-central West Virginia. The filed site is owned and operated by Northeast Natural Energy, LLC and contains several horizontal Marcellus Shale wells. MSEEL provides a unique opportunity to undertake field and laboratory research to advance and demonstrate new subsurface technologies and to enable surface environmental studies related to unconventional energy development. One of the core plugs obtained from the science well was used in this study for the evaluation of reliable Marcellus Shale petrophysical properties. The permeability of the core plug was measured under different gas pressures at constant net stress. The absolute permeability was then determined by applying the appropriate gas slippage correction. The porosity and the permeability of the core plug were then measured under a wide range of net stress. The measured porosity and permeability values were found to be sensitive to the stress. The permeability measurement results exhibited two distinctive behaviors with respect to the net stress that can be attributed to the natural fracture and matrix properties. The experimental results were then utilized to determine the natural fracture closure stress. The measurements also revealed that gas adsorption, when an adsorbent gas was used for the mesurements, resulted in a reduction in the absolute permeability of the sample.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3