pH-Insensitive Polymeric Particles for Enhanced Oil Recovery in Reservoirs With Fractures

Author:

Panthi Krishna1,Mohanty Kishore K.1

Affiliation:

1. University of Texas at Austin

Abstract

Summary Many carbonate reservoirs have natural fractures that reduce the sweep efficiency of displacement processes. The goal of this study is to improve oil recovery by reducing fluid bypassing caused by fractures, especially in carbon dioxide (CO2) floods. The pH-insensitive polymeric particles (PIPPs) synthesized in this study can plug fractures in reservoir rocks and divert fluid flow into the rock matrix. PIPPs swell in brine similar to polymeric particle gels (PPGs) published in literature; the swelling is a function of brine salinity. A PIPP expands many times (≈35 times) in deionized (DI) water, but swells only approximately 3 times in very-high-salinity (20 wt% NaCl) brine. The swelling of the particles is independent of pH in the range of 2 to 12. The swelling process is reversible with salinity. In water without divalent cations, these particles are stable at 80°C for at least a month. Coreflood results show that these small particles can be transported through fractures during high-salinity-brine injection and reduce the flow capacity of the fractures during low-salinity-brine injection. Subsequently, the injection fluid (brine, toluene, or CO2) is diverted into the matrix, and recovers oil from previously unswept matrix. PIPP injection increases waterflood recovery in cores with full fractures and half fractures connected to the inlet. PIPP placement also increases oil recovery for tertiary miscible/CO2 floods.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3