Status of Miscible Displacement

Author:

Stalkup Fred I.1

Affiliation:

1. Arco Oil and Gas Company

Abstract

Abstract Methods for miscible flooding have been researched and field tested since the early 1950's. This paper reviews the technical state of the art and field behavior to date for the major miscible flood processes: first-contact miscible, rich-gas drive, vaporizing-gas drive, and carbon dioxide flooding. Important technological areas selected for review include phase behavior and miscibility, sweepout, unit displacement efficiency, and process design variations. Carbon dioxide flood technology is emphasized, and several technical issues are identified that still need to be resolved. Rules of thumb and ranges of conditions are discussed for applicability of each process. A comparison is made of the incremental recovery and solvent slug effectiveness observed in field trials of the different processes. From the limited data available, processes. From the limited data available, there is no clear-cut evidence that field results on average and for a given slug size have been appreciably better or poorer for one process compared with another. Introduction The search for an effective and economical solvent along with development and field testing of miscible-flood processes has continued since the early processes has continued since the early 1950's. Early focus was on hydrocarbon solvents, and three types of hydrocarbon-miscible processes were developed: the first-contact miscible process; the vaporizing-gas drive process, often called high-pressure gas drive; and the rich-gas drive process, often called condensing-gas drive. First-contact miscible solvents mix directly with reservoir oils in all proportions and their mixtures always remain proportions and their mixtures always remain single phase. Other solvents are not directly miscible with reservoir oils, but under appropriate conditions of pressure and solvent composition these solvents can achieve miscibility in-situ by mass transfer of oil and solvent components through repeated contact with the reservoir oil. miscibility achieved in this manner is termed multiple-contact or dynamic miscibility. The vaporizing-gas drive process achieves dynamic miscibility by in-situ vaporization of intermediate molecular weight hydrocarbons from the reservoir oil into the injected gas. Dynamic miscibility is achieved in the rich-gas drive process by in-situ transfer of intermediate molecular weight hydrocarbons from the injected gas into the reservoir oil. Propane or LPG mixtures typically were the solvents used in first-contact hydrocarbon miscible flooding, whereas natural gas at high pressure and natural gas with appreciable concentrations of intermediate molecular weight hydrocarbons were injection fluids in vaporizing-gas drive and rich-gas drive floods. The high cost of propane, LPG, or rich hydrocarbon gas propane, LPG, or rich hydrocarbon gas dictated that these solvents be injected as slugs which usually were driven with natural gas. Flue gas and nitrogen also have been found to achieve dynamic miscibility at high pressures with some oils by the vaporizing-gas drive mechanism. Hydrocarbon miscible processes have received extensive field testing since the 1950's, primarily in the United States and Canada. Over 100 projects were initiated during this time period. The majority were small-scale pilot tests involving one or at most a few injection wells; however, a number of large projects were undertaken involving several thousand acres or more (more than 4 000 000 m2). A few projects tested flue gas injection.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3