State of the Art Development in Annulus Evaluation

Author:

Gupta Shilpi1,Govil Amit1,Obando Guillermo1,Winther Tonje1,Delabroy Laurent2

Affiliation:

1. Schlumberger

2. Aker BP

Abstract

Abstract In an oilfield well, when the annulus contents behind the casing are evaluated using ultrasonic measurements, the properties of the borehole mud, such as acoustic impedance and fluid velocity, are critical input for the accurate determination of acoustic impedance of annulus material and its subsequent bond quality. In deviated or horizontal wells, mud settling, and subsequent segregation leads to azimuthal and depth uncertainties in annulus evaluation. Typically, due to gravity, mud segregates, with the light component at the top and heavier component at the lower side of the well. In a non-homogeneous mud, using a single mud impedance value for computing acoustic impedance of the annulus can lead to ambiguous answers with uncertainties. Traditionally, it has been a challenge to accurately measure and apply these variations in acoustic impedance of the mud to precisely interpret the bond quality in the annulus. A novel pulse-echo processing scheme called R+ inversion, based on a 3-parameter inversion approach, eliminates, to a great extent, the dependence on prior knowledge of the borehole mud. The 3-parameter inversion can also reveal conditions such as mud deposition and segregation in deviated pipes. This new processing enables easier and accurate interpretation of the annular content together with essential information about the logging fluid. Four case studies established the successful implementation of R+ inversion in deviated wells in the Norwegian Continental Shelf (NCS) with azimuthal uncertainties in the mud acoustic impedance to provide reliable annulus interpretation. These measurements correlate and are validated using sonic logs as well as flexural attenuation measurements, thus providing confidence in the results and decisions. The case studies compare acoustic impedance results using legacy processing and R+ inversion processing. The limitation to use the azimuthal variations of mud in the traditional processing sometimes leave unanswered questions related to the bond quality affecting the intervention decisions expected from the bond log. With the help of R+ inversion, the operator managed to take informed intervention decisions faster, thus saving rig time and cost. Four case studies are explained in the details that demonstrate and validate the importance of R+ inversion when borehole mud settling occurs azimuthally, thus overcoming previous limitations of mud impedance computation and usage. Cement evaluation using R+ inversion enables accurate and critical decision making during new well construction, intervention, plugging, and abandonment in all conditions, irrespective of the casing sizes and cement types.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3