Wax Deposition Pattern in Wellbore Region of Deep Condensate Gas Reservoir and Its Prevention: A Combined Experimental and Simulation Study

Author:

Wang Zhihua1,Xu Yunfei1,Li Jinling2,Wang Hankun3,Hong Jiajun1,Zhou Bo4,Pu Hui5

Affiliation:

1. Northeast Petroleum University

2. PetroChina Daqing Oilfield Company Limited

3. Shenyang Branch of China Aviation Fuel Company Limited

4. PetroChina Tarim Oilfield Company

5. University of North Dakota

Abstract

Abstract When wax deposition behavior occurs, gas condensate well suffers from moderate to serve reduction of productivity, even wellbore region blockage. For the operation and maintenance of a gas condensate well production system, a new methodology is needed to understand the wax deposition pattern in the wellbore region and assess the wax prevention under wellbore conditions. This paper establishes a phase envelope relationship in phase-behavior of typical condensate gas flow. The experiments map the potential deposition location in the wellbore region and capture the chemical wax inhibition performance in terms of wax appearance temperature (WAT), wax crystal morphology, and wax inhibiting rate, etc. The fluid component in wells for determining the envelope relationship in phase-behavior was corrected based on the gas-oil ratio of the actual gas condensate well and the carbon number distribution of the produced condensate oil-gas. The cold finger apparatus and dynamic wax inhibition measurement apparatus were designed to test wax deposition characteristics and evaluate chemical wax inhibition performance. The main test unit comprises a fully-closed high-pressure autoclave and cold finger capable of a maximum temperature of 285 °F and a maximum pressure of 16000 psi. The condensate mixtures were sampled from the wellbore region by downhole fluid sampling method. Starting from chemical wax prevention in wellbore flow, the wax crystal-improved wax inhibitor, which was mainly composed of long-chain hydrocarbons and polymers with polar groups, was employed. The temperature difference, intake pressure, stirring rate, and amount of wax inhibitor were controlled in the experiments. The wax content, WAT, and wax crystal structural characteristics of condensate systems showed noticeable differences from well to well. Using the matched component by the simulation, the wellbore temperature and pressure profiles are reliably predicted, and the envelope relationship in phase behavior of condensate gas flow is reasonably determined. Thermal and molecular diffusion are still the main mechanisms for driving wax deposition behavior in wellbore regions. The critical conditions for wax precipitation, wax deposition characteristics, and potential impact of wax deposition pattern are formulated. With the combined wellbore temperature and pressure profiles, the universal relationship schema for identifying deposition location is derived. The wax deposition location obtained from the schema agrees well with what was detected in actual production. Chemical wax prevention is an effective way to inhibit wax deposition. A maximum WAT reduction of 80% and a wax inhibiting rate of 90% could be achieved with the wax crystal improved wax inhibitor at a concentration of 0.25 wt.%. Understanding the wax deposition pattern in the wellbore region is significant for flow assurance and well operation. It provides evidence for wax prevention in wellbore flow and promotes deep condensate gas reservoir development and production efficiency.

Publisher

SPE

Reference43 articles.

1. Wax deposition and prediction in petroleum pipelines;Alnaimat;Journal of Petroleum Science and Engineering,2020

2. Experimental study of water-in-oil emulsion flow on wax deposition in subsea pipelines;Adeyanju;Journal of Petroleum Science and Engineering,2019

3. Wax formation in oil pipelines: a critical review;Aiyejina;International Journal of Multiphase Flow,2011

4. Evaluation of wax inhibitor performance through various techniques;Adams;Energy & Fuels,2018

5. The solubility of gas components and its importance in gas-condensate reservoir development;Abbasov;Petroleum Science and Technology,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3