Affiliation:
1. The University of Texas at Austin
Abstract
Abstract
Wettability is a key property, which controls multiphase fluid flow in oil recovery processes. It is well known that the asphaltene deposition on rock surface changes the wettability of the rock. Although many experiments in the literature have been conducted to understand the physics underlying wettability alteration in crude oil/brine/rock (COBR) system because of asphaltene deposition; a sophisticated mathematical model describing this phenomenon is absent.
In this paper, based on available experimental data in the literature and known physical mechanisms of asphaltene deposition on the rock in the COBR system, a model for wettability alteration due to asphaltene instability in crude oil is presented. Contact angle is introduced as a function of asphaltene stability index (ASI), which is determined thermodynamically based on the difference between the fugacity of asphaltene and the heaviest component in the oil. The shape of this function depends on pH, salinity and cation valency of brine, and asphaltene content of crude oil. We implemented our proposed model along with asphaltene precipitation, flocculation, and deposition models into an in-house compositional simulator, UTCOMP, developed at The University of Texas at Austin. Permeability and porosity reduction due to asphaltene deposition are also considered. Furthermore, relative permeabilities and capillary pressure are modified because of contact angle alteration during simulation.
Although the amount of asphaltene deposition in the reservoir may not be comparable to the wellbore, a significant change in wettability occurs after the deposition of first layer of asphaltene on the rock surface. The result of our simulation shows that wettability alteration affects oil recovery, specifically when the brine produces unstable water film on the rock surface. In this case, rock wettability can change from 30° (water-wet) to 150° (oil-wet) and yield change in recovery depending on absolute permeability reduction magnitude and change in trapped oil saturation as well as end-point relative permeability.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献