Modeling of Wettability Alteration Due to Asphaltene Deposition in Oil Reservoirs

Author:

Darabi Hamed1,Sepehrnoori Kamy1,Kalaei Mohamad Hosein1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract Wettability is a key property, which controls multiphase fluid flow in oil recovery processes. It is well known that the asphaltene deposition on rock surface changes the wettability of the rock. Although many experiments in the literature have been conducted to understand the physics underlying wettability alteration in crude oil/brine/rock (COBR) system because of asphaltene deposition; a sophisticated mathematical model describing this phenomenon is absent. In this paper, based on available experimental data in the literature and known physical mechanisms of asphaltene deposition on the rock in the COBR system, a model for wettability alteration due to asphaltene instability in crude oil is presented. Contact angle is introduced as a function of asphaltene stability index (ASI), which is determined thermodynamically based on the difference between the fugacity of asphaltene and the heaviest component in the oil. The shape of this function depends on pH, salinity and cation valency of brine, and asphaltene content of crude oil. We implemented our proposed model along with asphaltene precipitation, flocculation, and deposition models into an in-house compositional simulator, UTCOMP, developed at The University of Texas at Austin. Permeability and porosity reduction due to asphaltene deposition are also considered. Furthermore, relative permeabilities and capillary pressure are modified because of contact angle alteration during simulation. Although the amount of asphaltene deposition in the reservoir may not be comparable to the wellbore, a significant change in wettability occurs after the deposition of first layer of asphaltene on the rock surface. The result of our simulation shows that wettability alteration affects oil recovery, specifically when the brine produces unstable water film on the rock surface. In this case, rock wettability can change from 30° (water-wet) to 150° (oil-wet) and yield change in recovery depending on absolute permeability reduction magnitude and change in trapped oil saturation as well as end-point relative permeability.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3