Understanding the Impact of Production Slugging Behavior on Near-Wellbore Hydraulic Fracture and Formation Integrity

Author:

Lu Haidan1,Anifowosh Olatunbosun1,Xu Lili1

Affiliation:

1. Schlumberger

Abstract

Abstract Numerous studies on unconventional shale well production data have shown that downhole pressure fluctuations can exceed 300 psig during a slugging period. Such pressure fluctuation will result in very high drawdown and could lead to near-wellbore formation damage when the rock failure criterion was met. An engineering workflow was developed to investigate the impact of multiphase slugging events on cemented casing plug and perforation (CCPP)and open hole sliding sleeves (OHSS) completions. Based on transient pressure analysis and geomechanical evaluation, safety operational envelope was generated to minimize the risk of formation damage due to slugging behavior. In this study, a dynamic multiphase flow simulator was used to predict the pressure amplitude and frequency during the slugging events in both a CCPP and OHSS completion configuration. The results from the simulation were then incorporated into a geomechanical model to analyze and identify potential hydraulic fracture closure and formation damage concerns, which can compromise well performance. The results from this study show that OHSS completion is more vulnerable to damage during the downhole slugging period than a CCPP completion. However, severe formation and fracture damage could occur during downhole slugging for CCPP well if the well is operated outside the safety operational envelope. Results from the two case studies led to the conclusion that it is crucial to consider the effect of downhole slugging on near-wellbore fracture and formation integrity to avoid permanent and irreversible damage.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3