Evaluation of Ultrahigh-Temperature-Resistant Preformed Particle Gels for Conformance Control in North Sea Reservoirs

Author:

Schuman Thomas1,Salunkhe Buddhabhushan2,Al Brahim Ali3,Bai Baojun3

Affiliation:

1. Missouri University of Science and Technology (Corresponding author; equal contributor)

2. Missouri University of Science and Technology (Equal contributor)

3. Missouri University of Science and Technology

Abstract

Summary Preformed particle gels (PPGs) are 3D, crosslinked, dried polymer particles that can swell to several hundred times on contact with formation water. PPGs have been used extensively to control water production problems in reservoirs with conformance problems. The current state-of-the-art PPGs are polyacrylamide-based hydrogel compositions which lack long-term thermal stability under high-temperature and -salinity conditions. There are many oil reservoirs across the globe exhibiting conditions of temperatures higher than 120°C with high salinity. A novel ultrahigh-temperature-resistant PPG composition (DMA-SSS PPG) was designed to fill up the technology gap between existing polyacrylamide-based PPG technology that degrades readily over 110°C temperatures. DMA-SSS PPG exhibited excellent thermal stability for greater than 18 months in North Sea formation and formation water environments at 130°C. DMA-SSS PPG described herein showed swelling capacities of up to 30 times in different salinity North Sea brines. DMA-SSS PPG’s physiochemical properties like swelling, swelling rate, and rheological behavior were studied as a function of temperature and salinity. DMA-SSS PPGs showed excellent elastic modulus (G’) of about 3200 Pa in formation water of 90% water content. Thermostability of DMA-SSS PPGs was assessed at 130 and 150°C in North Sea brines with different salinity conditions. DMA-SSS PPGs proved to be stable for more than 18 months without losing molecular integrity. Thermostability was further confirmed through different metrics such as cross-polarization magic angle spinning carbon-13 nuclear magnetic resonance (CPMAS 13C NMR), thermogravimetric analysis (TGA), and morphology. Laboratory coreflood experiments were performed to demonstrate the plugging efficiency of open fractures and effectiveness in reducing the permeability. DMA-SSS PPG comprehensive evaluation confirms its novelty for excellent hydrothermal stability, thus can be used to control water production problems for mature reservoirs exhibiting conditions of high salinity and high temperature.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3