Prediction of Wax Deposits for Crude Pipelines Using Time-Dependent Data Mining

Author:

Yao Bo1,Chen Jiaqi2,Li Chuanxian3,Yang Fei3,Sun Guangyu3,Lu Yingda4

Affiliation:

1. Shandong Key Laboratory of Oil & Gas Storage and Transportation Safety, College of Pipeline and Civil Engineering, China University of Petroleum (East China) (Corresponding author; email: ybcy2013@sina.com)

2. Petrochina Planning and Engineering Institute, China National Petroleum Corporation

3. Shandong Key Laboratory of Oil & Gas Storage and Transportation Safety, College of Pipeline and Civil Engineering, China University of Petroleum (East China)

4. Hildebrand Department of Petroleum & Geosystems Engineering, University of Texas at Austin

Abstract

Summary Accurately predicting wax deposits in a crude pipeline through empirical formulas or numerical modeling is unreliable because of the incomplete mechanism and the time-dependent unsteady actual operating conditions. With the help of the data collected by the supervisory control and data acquisition system of pipelines, wax deposit prediction is made possible by developing the time-dependent data mining method. In this article, the data from a typical long-distance crude pipeline in China operating over a 4-year time period was investigated. The inlet temperature prediction was first conducted by developing the long short-term memory (LSTM)-recurrent neural networks (RNNs) model, during which the feature sequencing, overfitting problems, and optimal hyperparameters were fully considered. Because of the time sequence cell, the accuracy of the LSTM-RNN model, as well as the time consumption, is much better than the RNN model when dealing with a great deal of data over a long period of time. Taking the inlet temperature prediction results as input features, the prediction model of average wax deposit thickness was established based on the backpropagation (BP) neural network and optimized by the particle swarm optimization (PSO), chaos particle swarm optimization (CPSO), and adaptive chaos particle swarm optimization (ACPSO) algorithms. The conclusions and associated algorithm from this article help to determine the reasonable pigging circle of long-distance pipelines practically. It could also be applied to guide the wax deposit prediction in the wellbore or oil-gatheringpipes.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3