Affiliation:
1. The University of Kansas
2. China University of Petroleum
3. Texas A&M University
Abstract
Abstract
Polymer flooding has been applied to the development of an offshore oil field S18 located in Bohai Gulf, China, where the water and polymer injection wells are alternately distributed. Field tests have indicated that the oil production and economic profit are significantly affected by the interference between alternately injected water and polymer. Therefore, it is of great importance to quantify the water-polymer interference (WPI) and thus improve the oil production. In this paper, the polymer flooding performance for the offshore oil field S18 has been evaluated by using a newly proposed WPI factor. The developed model provides a new way to evaluate the polymer flooding performance for the offshore oil field. More specifically, onshore and offshore polymer injection processes are thoroughly compared in terms of field performance, reservoir properties, and polymer flooding parameters. Then, a conceptual model is developed to analyze and quantify the interference between the injected water and polymer. The WPI factor is firstly introduced and quantified by a water cut funnel prediction method. The WPI factor is found to increase with the water injection rate and decrease with the polymer concentration. Subsequently, the reservoir simulation model of S18 oil field is well developed including 50 injectors and 93 producers with well-matched field production data. The WPI factor is accordingly optimized by tuning the water injection rate and polymer concentration at different blocks of the S18 oil field with the assistance of orthogonal design method. Consequently, the overall WPI factor of the S18 oil field is decreased by 8.20% after the optimized polymer & water injection scheme is applied, resulting in an increased oil recovery by 0.24%.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献