Numerical Investigation of Effects of Subsequent Parent-Well Injection on Interwell Fracturing Interference Using Reservoir-Geomechanics-Fracturing Modeling

Author:

Guo Xuyang1,Wu Kan1,An Cheng2,Tang Jizhou2,Killough John2

Affiliation:

1. China University of Petroleum, Beijing

2. Texas A&M University

Abstract

Summary Because of interwell interference, the completion and production of infill wells in unconventional reservoirs often change established production profiles for parent wells and lead to infill-well production lower than expected. Parent-well injection has been used in some fields in an attempt to reduce interwell interference. However, mixed responses were received from these attempts, and few modeling studies have been presented to investigate the mechanisms of the mixed responses. This study investigates the effects of subsequent injection in parent wells with legacy production on interwell interference using a data set from Eagle Ford Shale. A numerical-modeling work flow is presented for the characterization of poroelastic behaviors of multiphase-fluid diffusivity and rock deformation using the finite-element method and multifracture propagation using the displacement discontinuity method. It solves for the spatial-temporal evolutions of pore pressure and in-situ stress because of parent-well production and injection and models the fracture propagation during infill-well completion on the basis of updated heterogeneous in-situ stresses. Thus, the approach obtains the interwell fracture network comprising parent-well fractures and fractures from infill-well completion and captures fracture hits, which are necessary for the analysis of the injection effectiveness. Numerical results indicate that subsequent injections in parent wells make infill-well fractures grow more transversely, denoting improved completion qualities of infill wells. Also, the required subsequent injection volume leading to transverse infill-well fractures is positively correlated with the volume of legacy production in parent wells. In addition to subsequent injection volume, locations of perforation clusters along the infill well are another key parameter affecting the associated interwell interference. Results show that it is easier to generate fracture hits after infill-well completion, when perforation-cluster locations along the infill wellbore are identical to those along parent wellbores. In contrast, certain infill-wellbore perforation-cluster locations different from those in parent wellbores guarantee transverse infill-well fractures and avoid fracture hits during/after infill-well completion. On the basis of the numerical results in this specific study, when infill-well perforation cluster locations are properly placed, the volume of parent-well subsequent injection should be at least 76.9% of the total depleted liquid volume during the legacy production of parent wells for subsequent injection to be effective in avoiding fracture hits. This value is on a case-by-case basis and should not be generalized. The contribution of this work lies in its analyses of the mixed performance by parent-well subsequent injection in the reduction of interwell interference using a reservoir-geomechanics/fracturing modeling work flow.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3