Fractured Reservoir Simulation

Author:

Thomas L. Kent1,Dixon Thomas N.1,Pierson Ray G.1

Affiliation:

1. Phillips Petroleum Co.

Abstract

Abstract This paper describes the development of a three-dimensional (3D), three-phase model for simulating the flow of water, oil, and gas in a naturally fractured reservoir. A dual porosity system is used to describe the fluids present in the fractures and matrix blocks. Primary flow present in the fractures and matrix blocks. Primary flow in the reservoir occurs within the fractures with local exchange of fluids between the fracture system and matrix blocks. The matrix/fracture transfer function is based on an extension of the equation developed by Warren and Root and accounts for capillary pressure, gravity, and viscous forces. Both the fracture flow equations and matrix/fracture flow are solved implicitly for pressure, water saturation, gas saturation, and saturation pressure. We present example problems to demonstrate the utility of the model. These include a comparison of our results with previous results: comparisons of individual block matrix/fracture transfers obtained using a detailed 3D grid with results using the fracture model's matrix/fracture transfer function; and 3D field-scale simulations of two- and three-phase flow. The three-phase example illustrates the effect of free gas saturation on oil recovery by waterflooding. Introduction Simulation of naturally fractured reservoirs is a challenging task from both a reservoir description and a numerical standpoint. Flow of fluids through the reservoir primarily is through the high-permeability, low-effective-porosity fractures surrounding individual matrix blocks. The matrix blocks contain the majority of the reservoir PV and act as source or sink terms to the fractures. The rate of recovery of oil and gas from a fractured reservoir is a function of several variables, included size and properties of matrix blocks and pressure and saturation history of the fracture system. Ultimate recovery is influenced by block size, wettability, and pressure and saturation history. Specific mechanisms pressure and saturation history. Specific mechanisms controlling matrix/fracture flow include water/oil imbibition, oil imbibition, gas/oil drainage, and fluid expansion. The study of naturally fractured reservoirs has been the subject of numerous papers over the last four decades. These include laboratory investigations of oil recovery from individual matrix blocks and simulation of single- and multiphase flow in fractured reservoirs. Warren and Root presented an analytical solution for single-phase, unsteady-state flow in a naturally fractured reservoir and introduced the concept of dual porosity. Their work assumed a continuous uniform porosity. Their work assumed a continuous uniform fracture system parallel to each of the principal axes of permeability. Superimposed on this system was a set of permeability. Superimposed on this system was a set of identical rectangular parallelopipeds representing the matrix blocks. Mattax and Kyte presented experimental results on water/oil imbibition in laboratory core samples and defined a dimensionless group that relates recovery to time. This work showed that recovery time is proportional to the square root of matrix permeability divided by porosity and is inversely proportional to the square of porosity and is inversely proportional to the square of the characteristic matrix length. Yamamoto et al. developed a compositional model of a single matrix block. Recovery mechanisms for various-size blocks surrounded by oil or gas were studied. SPEJ P. 42

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3