Iron Sulfide Scale Formation: A New Anaerobic Setup and New Insights

Author:

Alduailej Yaser K.1,Sorbie Kenneth S.2

Affiliation:

1. Saudi Aramco

2. Heriot-Watt University

Abstract

Abstract Scale formation is mostly governed by scaling ion concentrations and fluid conditions (pressure, temperature, and pH). Sulfide scale formation is most commonly initiated through the mixing fluids containing scaling cations (Fe2+, Zn2+ and Pb2+) or sulfidic anions (H2S(aq), HS- and S2-), or, more rarely, in a single fluid containing both ions which is undergoing physical condition changes, such as a pressure drop or pH change. The literature has extensive reviews of sulfide scales formed by mixing two fluids in both static and dynamic tests. The self-scaling of metal sulfides in a single fluid, however, has been less investigated. An experimental setup and procedure have been developed to investigate the impact of various factors, such as pH (0 - 10), sulphide and metal ion concentrations and salinity (3.5 - 20 wt. %), on the formation of sulfide scales in general and iron sulfide (FeS) in particular. This new setup provides anaerobic conditions to isolate and prevent the interference of atmospheric oxygen, while retaining aqueous and gaseous sulfide in solution. The setup is comprised of airtight vials and Hungate-type tubes equipped with septum-caps to facilitate the gas-tight liquid transfers required in such experiments. The concentrations of sulfide ranged from 100 to 1,000 mg/L, and iron, zinc and lead were studied at levels in the range of 50 - 100 mg/L. The formation of sulfide scales was measured by monitoring the depletion of cation concentration in aqueous solution at various pH values. The excess amount of sulfide concentration significantly affected the formed iron sulfide by affecting the pH at which initial cation depletion occurred. The higher sulfide excesses gave an FeS precipitation onset at lower pH levels, and larger FeS particle size than lower levels of sulfide excess. These findings directly affect the scale inhibition design, as most sulfide scale control chemicals are dispersants. Therefore, particle size is very relevant to these dispersants in terms of the inhibitor loading and efficiency. The assumption that sulfide scale is principally reliant on the cation concentration, particularly if limiting, is inaccurate, and sulfide excess must also be quantified and taken into consideration in the inhibition design.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Iron Sulfide Chemical Dissolver Deployment in Water Wells;Day 2 Tue, November 01, 2022;2022-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3