Environmental Stewardship: Global Applications of a Nonradioactive Method To Identify Proppant Placement and Propped-Fracture Height

Author:

Duenckel R.J.. J.1,Palisch T.T.. T.1,Han X..1,Saldungaray P..1

Affiliation:

1. CARBO Ceramics

Abstract

Summary Accurate assessment of intervals receiving proppant and the determination of near-wellbore fracture heights are valuable in assessing and optimizing stimulation strategies. Proppant-placement evaluation in hydraulic fractures has traditionally involved the detection of radioactive (R/A) tracers pumped downhole with the proppant. However, as environmental regulations regarding this technique have tightened, and with increased scrutiny by the public and regulatory bodies of the industry in general and hydraulic fracturing in particular, the need for an alternative to R/A tracers has become paramount. A new technology for assessing intervals receiving proppant and determining fracture heights by use of a non-R/A detectable proppant has been introduced recently. The technology has found global acceptance and has proved to be a robust and accurate method of locating proppant in the near-wellbore region. In addition to eliminating the safety and environmental concerns with R/A tracers, this new method also provides a permanent indication of the proppant location near the wellbore. Unlike traditional R/A tracers that must be logged before the radioisotopes completely decay, this new method will allow investigation of the proppant pack many years or decades in the future, which will provide critical information during remedial or redevelopment work that cannot be determined with conventional approaches. A review of the current state of regulatory impediments to the use of R/A tracers in key producing regions around the world is presented, highlighting the need for an alternative diagnostic technology. The technology used in the application of the non-R/A detectable proppant is described, and comparisons with other fracture-diagnostic technologies are presented. Several case histories are shown that illustrate various applications of the technology in regions around the globe. These case histories include applications performed in Asia, the Middle East, Europe, and North America. In addition to identifying proppant location and fracture height, this technology can be used in other applications such as the evaluation of gravel-pack quality. If the current trends in regulatory actions related to hydraulic fracturing continue, it is anticipated that the use of R/A tracers will be restricted to fewer and fewer locales. At the same time, reliable fracture diagnostics for optimization of hydraulic fracturing, from both a wellperformance and a cost-control standpoint, remains extremely important.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3