Abstract
Summary
In matrix treatments, placement of the injected fluids is essential for success. Over the years, several diversion and placement techniques have been applied to obtain a desired fluid distribution. Real-time evaluation of a treatment was limited to observing injection pressures or bottomhole pressures. These measured pressures provided information on the diversion process. The application of distributed-temperature sensing (DTS) during matrix treatments to monitor the temperature profiles along the wellbore in real time is a recent method to obtain a qualitative indication of the fluid distribution. In this paper, we discuss if DTS can also be used to quantify the fluid distribution during a matrix treatment.
For the real-time quantification of the fluid distribution during a matrix treatment from temperature surveys, both real-time readouts of the temperature surveys and an accurate real-time model are needed. With DTS, the real-time readout is a feasible technique developed to present and evaluate the temperature surveys in real time. Further, a coupled wellbore and near-wellbore thermal model is available that runs in real time. This paper describes these techniques, models, and validations using several case histories.
In addition, an analysis of matrix treatments using DTS temperature surveys, where available, are presented. The models are used in the analysis to obtain calculated fluid flow distribution. We discuss how this methodology can be applied in real time and what benefits quantification of fluid flow distribution offers. Further, we describe what other benefits can be obtained from real-time temperature profiles during stimulation treatments.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Energy Engineering and Power Technology,Fuel Technology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献