Comparative Analysis of Data-Driven, Physics-Based and Hybrid Reservoir Modeling Approaches in Waterflooding

Author:

Mogollon Jose Luis1,Tillero Edwin1,Calad Carlos2,Lake Larry3

Affiliation:

1. Movus Energy Solution

2. Tachyus

3. The University of Texas At Austin

Abstract

Abstract Hydrocarbon production optimization is essential in pursuing the best scenarios for economic outcomes. But because of complex and multi-dimensional nature of production processes, thousands of scenarios are possible. Extensive data collection may allow uncovering patterns still unidentified. With on-site computing power increasing, cloud availability, and artificial intelligence evolution, mathematical optimization methods are becoming powerful and accessible. Data type-tailored models are implemented for history matching and prediction of operational efficiency of the asset. This paper presents a comprehensive analysis and comparison of three data type-tailored reservoir modeling methods and their optimization process for waterflooding field cases. The mathematical techniques used were Data-Driven Capacitance Resistance Model (CRM), Numerical Simulators (Data-Physics) coupled to Smart Algorithms Optimizers, and Hybrid Model (Machine Learning Physics-Based). They were compared to 1-identify the benefits of mathematical optimization techniques, 2-illustrate the methods developed to sort out time and computing capacity restrictions, and 3-validate the techniques by comparing the forecast with actual results. The six study cases of different reservoir types in Argentina, Venezuela, and the USA, had different types data availability. Four had no static model. In two cases, field results were available to confirm the accuracy of the forecasted injection and production. The forecasted increase in Net Present Value (NPV) and cumulative oil production (Np) ranged to 30%, and optimized water injection rates decreased by 50%. Traditional modeling techniques yielding unreliable result in one field with hundreds of producing layers and unknown lateral and vertical continuity were solved using a machine learning technique. In some cases, they pointed toward non-intuitive infill drilling sequence and injection water redistribution. Also, they pointed to options that reduce economic risk. The methods yielded many better economic scenarios and increased the flexibility of operationalizing plans. In one field requiring excessive computing power, using time horizons reduction and successive year-by-year optimization yielded 4 times the NPV of the base case. This approach solves objections related to long computing time and system instability. With the three mathematical techniques, the asset value could be continually maximized by a novel implementation of a heuristic decision-making approach that continuously challenge the current scenario. It makes a systematic formulation of conceivable new scenarios, competing through an objective function determining the probity of compared scenarios. The optimization also resulted in an up to 50% decrease in water injection requirements and the same percentual CO2 emissions reduction.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3