Development of Bio-Based Surfactant Foams for Hydrocarbon Gas Disposal Applications

Author:

Jin Julia1,Zuo Lin1,Pinnawala Gayani1,Linnemeyer Harold1,Griffith Christopher1,Zhou Jimin1,Malik Taimur1

Affiliation:

1. Chevron Technical Center, a Division of Chevron USA Inc.

Abstract

Abstract There has been increasing interest in different greenhouse gas (GHG) management strategies including the reduction of methane emissions and carbon sequestration. It has been proposed that reinjection of excess produced natural gas can mitigate GHG emissions without compromising oil production. Foam has been used as a method to reduce gas mobility, delay gas breakthrough, and improve sweep efficiency. However, industrial production of petroleum-based chemicals or surfactants to generate foam can be dependent on fossil-based resources that can be scarce or expensive. The main objective of this work was to reduce chemical cost and oil-based chemical dependency by developing an alternative biosurfactant formulation to generate high quality foam. Biosurfactant blends were ranked in comparison to single component anionic and nonionic surfactants and other commercially available surfactant blends. Bulk stability "shake tests" were done to look at initial foamability and stability of the different candidates and then corefloods in sandpacks and surrogate rocks were completed to look at if formulations would generate foam in porous media with methane gas and in the presence of crude oil. Experiments showed success in replicating chemical performance by replacing traditional oil-based surfactants with bio-based lignin derived surfactants even at reservoir conditions. High-quality biosurfactant foams reduced chemical costs, provided an alternative method to dispose of large amounts of hydrocarbon gas, and improved oil recovery through foam displacement.

Publisher

SPE

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3