An Advanced Clarification Process for Treating Produced Waters

Author:

Ringler Eric1,Chatterton Bill1,Philbrook Dave2,Severin Blaine F.3

Affiliation:

1. Southern Research Institute

2. M2 Water Treatment

3. Environmental Process Dynamics

Abstract

Summary An advanced clarification process that was based on enhanced floc removal with magnetite and magnetic ballast [M2 Water Treatment's Magnetic Ballast Clarification (MBC) system] was evaluated in a field study at a hydraulic-fracture wastewater disposal site in southwest Texas. In this process, suspended solids are chemically flocculated in the presence of magnetite, rendering dense floc particles that are also magnetic. Flocculated solids with high settling rates are removed by gravity separation. The settled solids are then removed by use of drum-styled magnetics. Magnetite is recovered and reused. Although technically called clarification, the MBC process is governed by magnetic flux as opposed to gravity forces, allowing for a much smaller unit footprint, a unit that is portable for mobile use, and more dynamic control compared with conventional clarification. Produced water from a total of nine wells was processed during a period of several weeks in July and August 2015 in a 5-gal/min (171-B/D) pilot unit. Most tests were operated at approximately 3.1 gal/min (106 B/D) for consistency with the highly variable wastes encountered. Treated water sufficiently met criteria for reuse on the basis of oil and grease (O&G), total suspended solids, and turbidity removal. The cost included two hypothetical treatment-plant sizes: a local processing unit plant (2,380 B/D or 100,000 gal/D) and a larger regional treatment system (11,900 B/D or 500,000 gal/D). Costs ranged from USD 0.79/bbl for the smaller treatment option to USD 0.22/bbl for the larger option, which included chemical costs and amortized (10 years) capital costs, installation, and labor. Estimates were based on assumptions for water requirements and treatment needs in the Barnett, Marcellus, and Eagle Ford shale plays, and included assumptions on freshwater availability, trucking costs, and treatment costs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3