Formation Damage Diagnosis Facilitates a Successful Remedial Treatment Design and Execution in Sandstone Horizontal Oil Producer: A Laboratory and Field Case Study

Author:

Bataweel M. A.1,Al-Ghamdi A. H.1,Osode P. I.1,Almubarak T. A.1,Azizi E. S.1,Sarhan Eddy1,Al-Faifi M. G.1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Well-control fluids were used during a routine overbalanced workover operation in an offshore well completed in high permeability sandstone. As expected, a fluid loss control pill was used to control the excessive losses encountered during this operation. However, due to the high permeability of the reservoir and the absence of sized particles in the pumped pill; large amount of fluids were lost to the formation before losses were controlled. The deep invasion of fluids laden with high concentration of polymer had inevitably resulted in severe formation damage and impaired production. Several attempts to clean out the wellbore and revive the well flow were unsuccessful with no injectivity either. The well was consequently suspended while a multidisciplinary team was formed to identify the cause of the impairment and recommend a treatment plan. A comprehensive review of detailed field operation and data related to the fluid losses accompanied with laboratory work to identify the damaging mechanism and formulate an optimized remedial treatment was conducted. The lab work included jar testing to assess compatibility and emulsion tendency when different wellbore fluids are mixed with each other and with formation fluids. Analysis of the samples collected from the wellbore was carried out and different treatment fluid options were evaluated using actual field samples. Core flood experiments were also conducted to assess the impact of high-viscosity pills on permeability and ability of remedial treatment in restoring the original permeability. Experimental results revealed partial removal of the polymer invading the core using organic acid. The designed pre-flush composed of mutual solvent with surfactant package was effective in breaking the emulsion from field samples and laboratory-prepared emulsions. A significant improvement in production from this well was realized by application of a cost effective formic acid-based chemical treatment. Proper treatment design with effective displacement technique were also attributed to the successful damage removal and regained well productivity.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3