Affiliation:
1. Colorado School of Mines
2. Korea Gas Corporation, and Colorado School of Mines
3. Halliburton and Colorado School of Mines
Abstract
Summary
Matrix and fracture permeability of carbonate-rich tight cores from Horn River Basin, Muskwa, Otter Park, and Evie Shale formations, were measured before and after exposing the core samples to spontaneous imbibition using dilute acid [1- or 3-wt% hydrochloric acid (HCl) diluted in 10-wt% potassium chloride (KCl) brine]. Permeability and porosity were measured at net stress between 1,000 and 5,000 psia. Brine and dilute-acid imbibition effect on proppant embedment, rock softening/weakening, and fracture roughness were assessed. The following are some of the experiment observations: (a) Formation damage caused by water blockage of water-wet shales can be improved by adding dilute HCl or by using hydrocarbon-based fracturing fluids; (b) matrix permeability of clay-rich or calcite-poor shale samples is usually impaired/damaged by dilute-acid imbibition; (c) matrix permeability and porosity of calcite-rich shales usually improved with dilute-acid imbibition; (d) effective fracture permeability of unpropped calcite-rich shales is reduced by dilute-acid imbibition; the latter is because of “rock softening” and “etching/smoothing” of fracture roughness on the “fracture faces.” Nevertheless, dilute-acid imbibition is less damaging than brine (slickwater) imbibition; and (e) proppant embedment was observed during both brine (slickwater) and dilute-acid imbibition. Hence, experimental results of this study imply that dilute-acid injection/imbibition/fracturing in carbonate-rich shale reservoirs can lead to hydrocarbon-production improvement caused mainly by the matrix/permeability improvement.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Energy Engineering and Power Technology,Fuel Technology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献