Effect of Dilute Acid on Hydraulic Fracturing of Carbonate-Rich Shales: Experimental Study

Author:

Weldu Teklu Tadesse1,Park Daejin2,Jung Hoiseok2,Amini Kaveh1,Abass Hazim3

Affiliation:

1. Colorado School of Mines

2. Korea Gas Corporation, and Colorado School of Mines

3. Halliburton and Colorado School of Mines

Abstract

Summary Matrix and fracture permeability of carbonate-rich tight cores from Horn River Basin, Muskwa, Otter Park, and Evie Shale formations, were measured before and after exposing the core samples to spontaneous imbibition using dilute acid [1- or 3-wt% hydrochloric acid (HCl) diluted in 10-wt% potassium chloride (KCl) brine]. Permeability and porosity were measured at net stress between 1,000 and 5,000 psia. Brine and dilute-acid imbibition effect on proppant embedment, rock softening/weakening, and fracture roughness were assessed. The following are some of the experiment observations: (a) Formation damage caused by water blockage of water-wet shales can be improved by adding dilute HCl or by using hydrocarbon-based fracturing fluids; (b) matrix permeability of clay-rich or calcite-poor shale samples is usually impaired/damaged by dilute-acid imbibition; (c) matrix permeability and porosity of calcite-rich shales usually improved with dilute-acid imbibition; (d) effective fracture permeability of unpropped calcite-rich shales is reduced by dilute-acid imbibition; the latter is because of “rock softening” and “etching/smoothing” of fracture roughness on the “fracture faces.” Nevertheless, dilute-acid imbibition is less damaging than brine (slickwater) imbibition; and (e) proppant embedment was observed during both brine (slickwater) and dilute-acid imbibition. Hence, experimental results of this study imply that dilute-acid injection/imbibition/fracturing in carbonate-rich shale reservoirs can lead to hydrocarbon-production improvement caused mainly by the matrix/permeability improvement.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3