Mechanisms of Confining Pressure Dependence of Resistivity Index for Tight Sandstones by Digital Core Analysis

Author:

Dai Hongyi1,Shikhov Igor1,Li Rupeng1,Arns Ji-Youn2,Arns Christoph H.1

Affiliation:

1. University of New South Wales

2. CJEL Digital Imaging Education Solution Pty Ltd

Abstract

Summary Resistivity measurements are a major input into hydrocarbon reserve estimation and are usually described by Archie’s laws. In this study, we use digital rock physics to analyze the mechanisms of non-Archie and Archie behavior of formation factor (FF) and resistivity index (RI) of low-porosity Fontainebleau (FB) sandstone for ambient conditions and under high confining pressure, respectively. FB sandstone was imaged by micro-X-ray computed tomography (micro-CT) at a resolution of 1 µm. Subresolution details of the grain contact width distribution along with their length were extracted from a set of scanning electron microscope (SEM) images. The nanoscale aperture of grain contacts, which is below tomogram resolution, is accounted for in micro-CT-based numerical calculations by assigning effective porosity and conductivity to individual voxels of the extracted grain contact network. A porosity reduction of grain contacts and open pore space as a function of applied confining pressure is introduced, capturing the pressure dependence. The concept was implemented by grain contact labeling, introducing an additional phase derived from a Euclidean distance transform (EDT). Subvoxel stress-strain effects were incorporated by attributing all compressibility effects to the pore space (open pore space and grain contacts), treating the solid phase as perfectly rigid. Voxel-scale input conductivities are assigned using Archie’s law followed by solving the Laplace equation for sample-scale rock resistivity and RI directly on the segmented image using the finite element method. For the numerical modeling of the FF and RI of low-porosity FB sandstone as a function of confining pressure, which depends on subresolution features, a set of hypotheses were tested. These are based on two segmentation scenarios incorporating the measured contact aperture distribution from SEM analysis—a homogeneous aperture-based segmentation by assuming all grain contacts as an average constant value and a heterogeneous aperture-based segmentation assigning two groups of grain contact apertures. The segmentation scenarios enable homogeneous and heterogeneous morphological change of grain contacts due to confining pressure effects. Furthermore, partial saturation of grain contacts is considered. In all cases, strong water-wetness was assumed, and discretization effects were analyzed carefully. The numerical results highlight the relative contribution of each of two conductive components of FB sandstone (open pores vs. grain contacts) over the full range of partial saturations. Of importance is the connectivity of the system, with discretization effects having a significant effect on FF, but a small effect on the RI. Grain contacts and confining pressure are found to have a significant impact on RI behavior of low-porosity FB sandstone. Both the grain contact network with homogeneous aperture and the heterogeneous grain contact network are able to describe experimental observations. However, it is not sufficient to assume a homogeneous change in contact area, and an inhomogeneous deformation of grain contact zones is required to match the experiment.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3