Use of Horizontal Drilling for CO2 Sequestration in Low Storage Capacity Aquifers: from Impossible to Feasible

Author:

Panchal Yashesh1,Amirlatifi Amin1,Sameh Omar1,Mostafa Mahmoud1,Ovalle Adriana1,Abou-Sayed Omar1,Mohamed Ibrahim Mohamed1

Affiliation:

1. Advantek Waste Management Services LLC

Abstract

Abstract The United States Department of Energy (DOE) Carbon Storage Assurance Facility Enterprise (CarbonSAFE) focuses on developing geological storage sites that can accommodate more than 50 million metric tons of Carbon Dioxide (CO2) over 25 years period. Few formations can accept this volume of CO2 through one classic vertical injection well. Multiple injection wells are usually needed to handle the targeted CO2 volume, with well spacing of several miles to avoid any pressure interference between the injectors. Nebraska is among the largest ethanol-producing states in the USA, with 25 ethanol plants that produce more than 17 million metric tons of ethanol per year. These plants produce a significant volume of CO2 as a typical ethanol plant produces around 150,000 metric tons of CO2 annually. Several techniques have been proposed to capture and sequestrate the emitted CO2, including mineral carbonation and carbon geological storage. Among these techniques, carbon geological storage is the most feasible option, especially sequestration in deep saline aquifers because of the larger volume that can be stored underground, and lower cost compared to the other techniques. Most of the ethanol plants are located on the eastern side of the state, while geological evaluation suggests that thick aquifers that can handle the large volume of CO2 are located in the southwest area of the state. Due to the high cost of building more than 100 miles of pipeline to transport the CO2 from the source to the injection point (pipeline costs around one million dollars per mile), thin aquifers have been identified locally near the plants to receive the generated CO2 volume. However, conducting CO2 injection operations through multiple scattered wells will increase the anticipated cost, including pore space rights, well drilling cost, land acquisition, CO2 transportation between sites, multiple injection systems and high-pressure pumps, labor, and injection monitoring. Drilling horizontal wells can maximize the volume of CO2 that can be injected in a single well at lower injection pressure than a vertical well. The long horizontal section will expose a larger formation volume and increase the surface area available for CO2 to flow through. St. Peter formation has been identified as one of the thin candidate formations to inject CO2 in the eastern part of Nebraska. The injection modeling conducted in this study shows that a single horizontal well with a lateral of 2,000 to 3,000 ft can replace at least three classic vertical injection wells.

Publisher

SPE

Reference48 articles.

1. A review of CO2 storage in geological formations emphasizing modeling, monitoring, and capacity estimation approaches;Ajayi;Petroleum Science,2019

2. Assessing CO2 injection risks using national risk assessment partnership (NRAP) tools;Ansari,2019

3. CO2 storage capacity estimation: methodology and gaps;Bachu;Int. J. Greenh. Gas Control,2007

4. Integrated mid-continent stacked carbon storage hub, Phase 1 Final Report;Bacon,2018

5. The long-term fate of CO2 in the subsurface: natural analogues for CO2 storage;Baines;Geol. Soc.,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3