A Scale-Model Study of Bottom-Water Drives

Author:

Henley D.H.1,Owens W.W.1,Craig F.F.1

Affiliation:

1. Pan American Petroleum Corp.

Abstract

Abstract The oil recovery performance of systems producing entirely by bottom-water encroachment has been experimentally determined in a series of scaled laboratory-model tests. The effects of well spacing, fluid mobilities, rate of production, capillary and gravity forces, well penetration and well completion techniques on the oil recovery performance have been investigated. The laboratory tests were performed using two uniform, unconsolidated sand-pack models. The models have ratios of the interwell distance to the formation thickness of 12 and 2, respectively. Tests at constant total fluid production rate were performed simulating a range of uniform reservoir characteristics and operating conditions encountered in field operations. The performance was determined by material balance and by observation of the encroachment of dyed fluids into the models. The results of the model tests agreed with those obtained mathematically when the conditions previously considered in theoretical studies were simulated, that is, when the oil and water are of equal density and no capillary forces exist. The model study of bottom-water drive indicated that certain variables can affect the oil recovery performance to a greater degree than can be predicted by present analytical methods. In one comparison, the oil recovery at a water-oil ratio of 20 (obtained at a wide well spacing) varied as much as threefold, depending upon the system's properties and the production rate. Lesser effect of mobility ratio and no effect of capillary forces over the range studied were observed. The test results also showed that the deeper the well penetration into the oil column, the greater the total water production to a producing WOR of 20. However, the ultimate sweep efficiency, and so the oil recovery to this level of WOR, did not vary significantly with well penetration. Horizontal fractures at the top of the formation did not significantly change the sweep characteristics of the reservoir models when values of radius and fracture capacity encountered in actual reservoirs were used. Impermeable pancakes at the bottom of the well moderately increased the oil recovery efficiency both at water breakthrough and at high water-oil ratios. A method is outlined by which the oil recovery performance of other uniform bottom-water drive systems can be estimated from the information obtained in these model tests.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scaling Experimental Immiscible Flow and Geomechanics in Fractured Porous Rock;Experimental Mechanics of Fractured Porous Rocks;2022

2. Experimental study on waterflooding development of low-amplitude reservoir with big bottom water;Journal of Petroleum Exploration and Production Technology;2021-09-04

3. Identification of the best correlations of permeability anisotropy for Mishrif reservoir in West Qurna/1 oil Field, Southern Iraq;Egyptian Journal of Petroleum;2021-09

4. Development of scaling criteria for steam flooding EOR process;Journal of Petroleum Exploration and Production Technology;2020-05-30

5. Study on Water Cone Behavior in Heavy Oil Reservoir with Bottom Water through Numerical Simulation;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2019-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3