Workflow for Integrating Geomechanics, Hydraulic Fracturing, and Reservoir Simulation to Determine Marcellus Shale Horizontal Well Production Potential

Author:

Al Jassasi Awadh1,Sattari Arya1,Aminian Kashy1,El Sgher Mohamed1,Matey-Korley Vida1,Samuel Ameri1

Affiliation:

1. West Virginia University

Abstract

Abstract A workflow for data analysis and model development for accurate prediction of the gas production from a Marcellus shale horizontal well with multiple hydraulic fracture stages was developed and implemented. The available data from a Marcellus shale horizontal well were collected, analyzed, and utilized to develop a reservoir simulation model. The properties of the hydraulic fractures were determined from the fracture treatment data and the mechanical properties by employing a commercial fracturing software which accounting for the impact of the stress shadowing. The available core plugs measurements, well logs, and the image logs were analyzed to determine the shale petrophysical and geomechanical properties including natural fracture (fissure) distribution. The available laboratory measurements and published data were analyzed to determine the gas adsorption characteristics and the shale compressibility. The impact of the shale compressibility was then incorporated in the model by developing multipliers for different s components of the compressibility, i.e., fissure permeability, matrix permeability, and hydraulic fracture conductivity as function of net stress. The model provided accurate prediction of the gas production which was confirmed by comparison against the production data. The inclusion of the compressibility multipliers (matrix, fissure, and hydraulic fracture), stress shadow-impacted hydraulic properties, and adsorbed gas were critical for achieving accurate gas production predictions. The low stress barriers between Marcellus shale and the upper zone caused the hydraulic fractures to grow in upward direction from Marcellus Shale and reduced efficiency of the hydraulic fractures. The compressibility and stress shadowing were found to negatively impact the gas production, particularly during the early stages of the production (1-5 years). The workflow developed in this study can be used to accurately predict the gas production and determine the optimal hydraulic fracture spacing for horizontal shale wells with multiple hydraulic fracture stages.

Publisher

SPE

Reference18 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3