Improved Reservoir Characterization Through Rapid Visualization and Analysis of Multiscale Image Data Using A Digital Core Analysis Ecosystem

Author:

Chandra Viswasanthi1,Tallec Gwenole2,Vahrenkamp Volker1

Affiliation:

1. King Abdullah University of Science and Technology

2. Thermo Fisher Scientific

Abstract

Abstract Efficient integration of multiscale image and petrophysical data is becoming increasingly important to tackle emerging reservoir characterization challenges associated with complex carbonate and unconventional reservoirs. In this paper we illustrate an integrated digital rock physics and petrophysical data analysis methodology empowered by a digital core analysis ecosystem, for defining reservoir rock types and flow units in a micritic carbonate formation. We apply the methodology to 35 meters of cored well data acquired from the Late Jurassic Upper Jubayla Formation, equivalent to the lower Arab-D reservoir in Saudi Arabia. Pre-processing, segmentation and digital rock physics calculations are performed using whole core computed tomography (CT), plug micro-CT, thin-section micrographs and scanning electron microscopy data. Further whole core CT data analysis includes generation of mean intensity and heterogeneity logs. The digital rock ecosystem is applied to these multiscale image data and to spatially correlate with petrophysical well logs. The unique whole core CT processing step in the workflow allows the core barrels to be intelligently removed, and all the cores to be stitched together regardless of the total size of data. We thus access the full advantage of 3D whole core CT data that provides significantly high vertical resolution of rock properties in the well interval. Furthermore, the live ecosystem enables the continuous integration of image and petrophysical data as they become available over the duration of this study. Results from digital image analysis reveal the micro- and macro-pore types and their connectivity across multiple scales. Combined with plug and thin section data, log interpretation and digital image analysis, these pore types are upscaled into well log scale through texture-based rock-typing. The digital core analysis ecosystem we employ in this study has a unique capability of visualizing and analyzing large volumes of image and petrophysical data, allowing a novel method for rock-typing. The proposed methodology is scalable to data sets consisting of many wells, thus making it a valuable tool for accurate characterization of complex carbonate and shale reservoirs, which are becoming increasingly reliant on high resolution imaging techniques for pore space characterization.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3