Sparse Water Fracture Channel Detection from Subsurface Sensors via a Smart Orthogonal Matching Pursuit

Author:

Al Shehri Abdallah1,Katterbauer Klemens1

Affiliation:

1. Saudi Aramco

Abstract

AbstractWater front movement in fractured carbonate reservoirs occurs in micro-fractures, corridors and interconnected fracture channels (above 5 mm in size) that penetrate the carbonate reservoir structure. Determining the fracture channels and the water front movements within the flow corridors is critical to optimize sweep efficiency and increase hydrocarbon recovery.In this work, we present a new smart orthogonal matching pursuit (OMP) algorithm for water front movement detection in carbonate fracture channels. The method utilizes a combined artificial intelligence) AI-OMP approach to first analyze and extract the potential fracture channels and then subsequently deploys a deep learning approach for estimating the water saturation patterns in the fracture channels. The OMP utilizes the sparse fracture to sensor correlation to determine the fracture channels impacting each individual sensor. The deep learning method then utilizes the fracture channel estimates to assess the water front movements.We tested the AI-OMP framework on a synthetic fracture carbonate reservoir box model exhibiting a complex fracture system. Fracture Robots (FracBots, about 5mm in size) technology will be used to sense key reservoir parameters (e.g., temperature, pressure, pH and other chemical parameters) and represent an important step towards enhancing reservoir surveillance (Al Shehri, et al. 2021). The technology is comprised of a wireless micro-sensor network for mapping and monitoring fracture channels in conventional and unconventional reservoirs. The system establishes wireless network connectivity via magnetic induction (MI)-based communication, since it exhibits highly reliable and constant channel conditions with sufficiently communication range inside an oil reservoir environment. The system architecture of the FracBots network has two layers: FracBot nodes layer and a base station layer. A number of subsurface FracBot sensors are injected in the formation fracture channels to record data affected by changes in water saturation. The sensor placement can be adapted in the reservoir formation in order to improve sensor measurement data quality, as well as better track the penetrating water fronts. They will move with the injected fluids and distribute themselves in the fracture channels where they start sensing the surrounding environment’s conditions; they communicate the data, including their location coordinates, among each other to finally transmit the information in multi-hop fashion to the base station installed inside the wellbore. The base station layer consists of a large antenna connected to an aboveground gateway. The data collected from the FracBots network are transmitted to the control room via aboveground gateway for further processing.The results exhibited strong estimation performance in both accurately determining the fracture channels and the saturation pattern in the subsurface reservoir. The results indicate that the framework performs well; especially for fracture channels that are rather shallow (about 20 m from the wellbore) with significant changes in the saturation levels. This makes the in-situ reservoir sensing a viable permanent reservoir monitoring system for the tracking of fluid fronts, and determination of fracture channels.The novel framework presents a vital component in the data analysis and interpretation of subsurface reservoir monitoring system of fracture channels flow in carbonate reservoirs. The results outline the capability of in-situ reservoir sensors to deliver accurate tracking water-fronts and fracture channels in order to optimize recovery.

Publisher

SPE

Reference9 articles.

1. "FracBot Technology for Mapping Hydraulic Fractures.";Al Shehri;SPE Journal,2021

2. "Approximation and learning by greedy algorithms.";Barron;The annals of statistics,2008

3. "Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise.";Cai;IEEE Transactions on Information Theory,2011

4. "Greedy adaptive approximation.";Davis;Journal of Constructive Approximation,1997

5. "Temperature-compensated fiber-optic Fabry–Perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application.";Jia;Sensors and Actuators B: Chemical,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3