Wettability Literature Survey- Part 4: Effects of Wettability on Capillary Pressure

Author:

Anderson W.G.1

Affiliation:

1. Conoco Inc.

Abstract

Wettability Literature Survey- Part 4: Effects of Wettability Part 4: Effects of Wettability on Capillary Pressure Summary. The capillary-pressure/saturation relationship depends on the interaction of wettability, pore structure, initial saturation, and saturation history. No simple relationship exists that relates the capillary pressures determined at two different wettabilities. Therefore, the most accurate measurements are made with cores that have native reservoir wettability. In a uniformly wetted porous medium, pore geometry effects and the extremely rough surfaces of the porous medium make the capillary pressure curve insensitive to wettability for small contact angles (less than about 50 deg.[0.87 rad] for drainage capillary pressure curves and less than about 20 deg. [0.35 rad] for spontaneous-imbibition capillary pressure curves). When the porous medium has fractional or mixed wettability, both the amount and distribution of the oil-wet and water-wet surfaces are important in determining the capillary pressure curve, residual saturations, and imbibition behavior. Imbibition also depends on the interaction of wettability, pore structure, initial saturation, and saturation history. Because of these interactions, there is a large range of contact angles where neither oil nor water will imbibe freely into a uniformly wetted reservoir core. In contrast, it is sometimes possible for both fluids to imbibe freely into a core with fractional or mixed wettability. Contact Angles, Capillary Pressure, and Wettability This paper is the fourth in a series of literature surveys covering the effects of wettability on core analysis. Changes in the wettability of cores have been shown to affect electrical properties, capillary pressure, waterflood behavior, relative permeability, dispersion, simulated tertiary recovery, irreducible water saturation (IWS), and residual oil saturation (ROS). When oil and water are placed together on a surface, a curved interface between the oil and water is formed, with a contact angle at the surface that can range from 0 to 180 deg. [0 to 3.15 rad]. By convention, the contact angle, 0, is measured through the water. Generally, when 0 is between 0 and 60 to 75 deg. [0 and 1.05 to 1.31 rad], the system is defined as water-wet. When 0 is between 180 and 105 to 120 deg. [3.15 and 1.83 to 2.09 rad], the system is defined as oil-wet. In the middle range of contact angles, a system is neutrally or intermediately wet. It can be shown that whenever an oil/water interface is curved, the pressure will abruptly increase across the interface to balance the interfacial tension (IFT) forces. This pressure jump, which is the capillary pressure, is given by Laplace's equation : (1) where sigma = IFT, P = capillary pressure, p = pressure in the oil, p = pressure in the water, and r1, r2 = radii of curvature of the interface, measured perpendicular to each other. By convention, the capillary pressure is defined as po-pw. Because of this definition, a radius of curvature po-pw. Because of this definition, a radius of curvature directed into the oil is positive, while one directed into the water is negative. Depending on the curvature of the surface, the capillary pressure can be positive or negative. When the interface is flat, the capillary pressure is zero. When fluids other than oil and water are used, the capillary pressure is usually defined as (2) where pNW is the pressure in the nonwetting fluid and pWET is the pressure in the wetting fluid. pWET is the pressure in the wetting fluid. The radii of curvature of the interface, and hence the capillary pressure, are determined by local pore geometry, wettability, saturation, and saturation history. For most porous media, the equations for the interfacial curvature are much too complicated to be solved analytically, and capillary pressure must be determined experimentally. In these cases, a simple relationship between contact angle and capillary pressure cannot be derived. One geometry where capillary pressure can be calculated as a function of geometry, wettability, and IFT is a capillary tube. Laplace's equation can be used to solve for the capillary pressure as a function of IFT, contact angle, and rt, the radius of the tube. P. 1283

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3