Phased Redevelopment of a Giant Mature Offshore Field Using Maximum Reservoir Contact MRC Wells

Author:

Koeck Charles-Henri1,Bensadok AbdelAziz1,Goyal Praffula1,Alhashmi Ali1

Affiliation:

1. ADNOC-OFFHSORE

Abstract

Abstract A giant brownfield re-development project with long horizontal wells was initiated to arrest production decline mainly caused by a lack of pressure support and free gas influx from the large gas cap. Key value drivers for the project are developing an understanding of the layers with regards to gas breakthrough, and achieving capital efficiency through low-cost well delivery, better planning and technology applications. Firstly, the field has been segmented based on the analysis of multiple factors influencing the free gas production. It considers geological aspects such as the study of depositional environment and diagenesis, structural elements such as high permeability streaks and fractures, dynamic behaviors such as the water injection efficiency, gas cap expansion or coning. Secondly, numerical simulations were then run in order to rank the sectors based on the expected model performance, compare them with real data categorization, and test the effect of the new proposed development schemes such as water injection at gas-oil contact and long horizontal wells equipped with downhole control valves. It was found that each sector has a specific production mechanism and appropriate developments were recommended and then tested in the simulation. For instance, high permeability streaks play a significant role on the development of some sectors instigating a big difference of maturity between sub-layers, early water or gas breakthrough. Also, the inefficiency of water injection is one of the biggest issues of the field. Most of the water injectors are located too far from the oil producers, and have a low injectivity due to the often degraded facies in the aquifer because of diagenesis. This leads to a lack of pressure support that is counterbalanced by the gas injection, ending up with a lot of high GOR wells and a bad sweep from the top of the structure as the gas tends to by-pass the oil. Simulation work showed that several remaining zones are safe for immediate development and should be prioritized for development in the near future. On the other hand, some of the mature layers prone to gas and water breakthrough need a boost for development, such as water injection at gas-oil-contact, artificial lift, low pressure system, GOR relaxation. Tight and undeveloped reservoirs are improved by implementing long horizontal drains.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3