Mechanism Analysis of Well Interference in Unconventional Reservoirs: Insights From Fracture-Geometry Simulation Between Two Horizontal Wells

Author:

Wu Kan1,Wu Biyi2,Yu Wei1

Affiliation:

1. Texas A&M University

2. Beijing Institute of Technology

Abstract

Summary Well interference is a common phenomenon between wells observed in unconventional reservoirs, which has received significant attention. It plays an important role in well-spacing considerations. Massive hydraulic fractures are generated in horizontal wells by multistage hydraulic-fracturing treatments and result in well interference between adjacent wells. However, very little work has been completed to understand how massive fractures cause well interference. In this study, we analyzed dynamic-stress evolution and multiple-fracture propagation from two horizontal wells to improve understanding of fracture hits. We used our newly developed nonplanar hydraulic-fracturing model that couples rock deformation and fluid flow in the fracture and horizontal wellbore. Fracture propagation in a stage is controlled by stress-shadow effects and flow-rate distribution between fractures. Fracture interaction within a stage and from adjacent wells is considered through a simplified 3D displacement discontinuity method. Well interference is well communication caused by fracture hits. Because of varying stress reorientation, fractures propagate toward each other from two adjacent wells, and fracture tips always tend to converge with each other and decrease fracture distance, which promotes fracture coalescence. For plug-and-perforate completion, multiple fractures in a stage generally cannot uniformly develop. Dominant fractures with extremely long length are often generated and hit fractures from adjacent wells. Fracture hits and well interference are induced by these two mechanisms, which are affected by fracture spacing and the differential stress (DS) of reservoirs. Results show that the larger the fracturing spacing is, the smaller the likelihood is to induce fracture connection. A large DS can prevent fractures from deviating from their original paths. For a reservoir with a large DS, fracture hits can be decreased with a stagger distance of fractures between two wells. This work uses a hydraulic-fracturing model to analyze fracture geometry between two horizontal wells and offers improved understanding of fracture connection. The results of the study provide critical insights to improve well interference and to optimize well spacing and design of multiwell completion techniques.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3