Seismic Fracture Detection At A Middle East Offshore Carbonate Field

Author:

Holmes Gordon M.1,Thomsen Leon1

Affiliation:

1. BP

Abstract

Abstract In 2001, a wide-azimuth 2C/3D OBS survey was acquired over an offshore carbonate field in the Middle East, and processed with techniques specifically designed to preserve and extract the azimuthal effects in the data. The results showed significant azimuthal anisotropy in amplitude, with apparent azimuthal variation in the P-wave AVO slope of as much as 100% at selected target horizons. The azimuth of the most positive slope was generally NW/SE, in agreement with the regional tectonic trend. The magnitude of the anisotropy varied markedly, with patches of strong anisotropy, with a granularity of 10's to 100's of metres, and a regional trend on the 2km scale. Vertical variation of these patches supports the hypothesis that the effects are due to subsurface anisotropy, rather than acquisition artifacts. Introduction A well-established technique used on surface reflection seismic data is Amplitude-Variation-with-Offset (AVO). AVO uses the amplitude of seismic reflection at a given horizon, as a function of increasing source-receiver offset distances, to infer lithological and fluid properties at that horizon. AVO analysis may also examine raypaths of varying source-receiver azimuths, in what is known as Amplitude- Variation-with-Offset-and-Azimuth (AVOA). With additional assumptions, AVOA allows the determination of fracture strike direction and fracture density. Such information may be interpreted and integrated with reservoir models to infer the localized stress field, tensor permeabilities, and fluid-flow directions. In contrast to methods (such as seismic coherency) that determine large-scale faults, AVOA analysis determines media properties much smaller than the seismic wavelength. These can be key to understanding a reservoir. AVOA was first reported by Lynn and Thomsen1 for land data, and by Mallick and Frazer2 and Lefeuvre3 for marine data, with theory first reported by Thomsen4. For conventional 3D marine seismic surveying techniques, the narrow distribution of source-receiver azimuths precludes detailed azimuthal studies on P-wave data. Only recently, through the use of Ocean Bottom Seismic (OBS) surveys, has marine data possessed azimuthal distribution appropriate for AVOA analysis. A modern 2C/3D OBS seismic survey over a carbonate field in the Middle East was acquired in 2001 with a full distribution of offsets and azimuths. In addition to the conventional processing flow, designed for proper imaging of the field, special techniques were applied to preserve and extract the azimuthal information for physical characterizationof the subsurface. The results yield the only small-scale picture of the fracturing pattern that is possible away from well control, and are therefore likely be extremely important in future reservoir management. Theory AVOA exists because fractures and other small features in a formation cause seismic properties (such as reflectivity and velocity) to vary with azimuth, in what is known as azimuthal anisotropy. By contrast, polar anisotropy is due to a fabric or pattern in a rockmass such that the elastic properties vary with polar angle (the angle from the vertical) only; this is the simplest form of anisotropy. However, when the horizontal azimuths are not all equivalent, as (for example) in the case of vertical parallel fractures, seismic properties will vary with azimuth (compass direction). In a simple case, the equations which govern the seismic waves are simply those of polar anisotropy, but with the polar axis horizontal, instead of vertical. In a more realistic case (i.e. the case of shales or thin-bedded sequences with a set of vertical fractures), the equations are those of orthorhombic symmetry (cf Tsvankin5). Azimuthal anisotropy is typically attributed to fractures, cracks, and microcracks, aligned by tectonic paleostress and current stress in the reservoir (Crampin6), although deposition history and style may be influential (Sayers7). As anisotropy is controlled by sub-wavelength properties of the rockmass, an understanding of azimuthal anisotropy is a window to the patterns of fractures and cracks pervasive within a formation.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3