A Graphics Processing Unit–Based, Industrial Grade Compositional Reservoir Simulator

Author:

Esler K.1,Gandham R.1,Patacchini L.2,Garipov T.1,Samardzic A.1,Panfili P.3,Caresani F.3,Pizzolato A.3,Cominelli A.3

Affiliation:

1. Stone Ridge Technology

2. Stone Ridge Technology (Corresponding author; email: lpatacchini@stoneridgetechnology.com)

3. Eni E&P

Abstract

Summary Recently, graphics processing units (GPUs) have been demonstrated to provide a significant performance benefit for black-oil reservoir simulation, as well as flash calculations that serve an important role in compositional simulation. A comprehensive approach to compositional simulation based on GPUs has yet to emerge, and the question remains as to whether the benefits observed in black-oil simulation persist with a more complex fluid description. We present a positive answer to this question through the extension of a commercial GPU-basedblack-oil simulator to include a compositional description based on standard cubic equations of state (EOSs). We describe the motivations for the selected nonlinear formulation, including the choice of primary variables and iteration scheme, and support for both fully implicit methods (FIMs) and adaptive implicit methods (AIMs). We then present performance results on an example sector model and simplified synthetic case designed to allow a detailed examination of runtime and memory scaling with respect to the number of hydrocarbon components and model size, as well as the number of processors. We finally show results from two complex asset models (synthetic and real) and examine performance scaling with respect to GPU generation, demonstrating that performance correlates strongly with GPU memory bandwidth. NOTE: This paper is published as part of the 2021 SPE Reservoir Simulation Conference Special Issue.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3