Removal of Magnetic Metallic Contamination – Improved Drilling Fluid Performance

Author:

Saasen Arild1,Pallin Jan Egil2,Ånesbug Geir Olav2,Lindgren Alf Magne3,Aaker Gudmund3,Rødsjø Mads4

Affiliation:

1. University of Stavanger

2. JAGTECH AS

3. Schlumberger Oilfield Services

4. AkerBP

Abstract

Abstract Different logging operations can suffer from presence of metallic particles in the drilling fluids. Directional drilling in Arctic areas can be a challenge because of magnetic contamination in the drilling fluid. This is a challenge especially when drilling east-west relative to the magnetic north direction. Magnetic and paramagnetic particles in the drilling fluid will shield the down hole compasses and introduce additional errors to the surveying than those normally included in the uncertainty ellipsoid. The objective of the project is to remove the magnetic particles being the largest contributor to this error. On many offshore drilling rigs there is mounted ditch magnets to remove metallic swarf from the drilling fluid. These magnets will normally only remove the coarser swarf. In this project we use a combination of strong magnets and flow directors to significantly improve the performance of the ditch magnets. This combination, together with proper routines for cleaning the ditch magnets significantly helps cleaning the drilling fluid. By the combined use of flow directors and ditch magnets it was possible to extract more than five times as much magnetic contamination from the drilling fluid. This is verified by comparing the ditch magnet efficiencies from two drilling rigs drilling ERD wells. The logging tool signal strengths of several down hole instruments were unusually good and insignificant down times were observed on the logging tools. The results are anticipated to have aided to the directional drilling performance. Detailed information on how to clean the drilling fluid properly from magnetic contamination is presented. It is also shown that this cleaning is significantly better than conventional cleaning of magnetic debris from drilling fluids.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3