Evidence of Chromatographic Effect During Flow of Gases Through Oilfield Cores

Author:

Roper W.A.1,Doscher Todd2,Kobayashi Riki3

Affiliation:

1. The Texas Co.

2. Shell Development Co.

3. The Rice Institute

Abstract

Introduction The chromatographic effect refers to the separation of constituents in a moving fluid phase which occurs when the phase is passed over a stationary phase, either solid or liquid, or large areal extent. In performing chemical analyses, the large surface contact area is provided in the case of gas-solid chromatography bypassing the gas over a porous solid and for gas-liquid chromatography bypassing the gas over a porous solid which has been coated with a nonvolatile liquid. The porous medium is usually placed in a cylindrical tube, although it may be a relatively flat sheet as in paper chromatography. According to one theory, the separation results from the difference in time spent by various components in the stationary phase. A gaseous component which is completely insoluble in the stationary phase, or is not adsorbed on the solid, proceeds unimpeded through the column. The versatility and power of the various types of chromatography for the analysis of complex mixtures are evident from their widespread use in performing chemical analyses and from the large number of symposia, books, and papers devoted to the subject in recent years. Associated developments are the application of chromatography to the determination of heats of solution, heats of adsorption, solubilities or K-values, etc. Gas-liquid chromatography analyses may be characterized by the manner in which the samples are introduced and displaced from the column. The three techniques used are known as(1) frontal analysis, (2) displacement analysis, and (3) elution analysis. The frontal analysis is performed by displacing an inert gas from the column by a continuous stream of the sample. As indicated in Fig. 1(A), all but the first fraction leaving the column represent mixtures rather than pure components. The displacement analysis is conducted by filling the column with a sample, then displacing it with a more strongly adsorbed or absorbed vapor. The resulting chromatogram is illustrated by Fig. 1(B). Finally, in the elution analysis a small sample of the mixture to be analyzed is introduced as a "plug" into a flowing stream of carrier gas to give an elution-type chromatogram, Fig. 1(C). The three techniques may be used to provide models to which flow patterns in other physical situations may be compared.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3