Evaluating Natural Gas-Based Foamed Fracturing Fluid Application in Unconventional Reservoirs

Author:

Pankaj Piyush1,Phatak Alhad1,Verma Sandeep1

Affiliation:

1. Schlumberger

Abstract

Abstract Foamed fracturing fluids have been used in unconventional reservoirs to reduce the water use and minimize deleterious impact on water-sensitive formations. As part of a Department of Energy (DOE) sponsored program, we previously identified an optimal thermodynamic pathway to transform wellhead natural gas (NG) into pressurized NG suitable for use as the internal phase in a foamed fracturing fluid. This study now aims to extend that work by determining the impact of using NG foam fracturing fluids on hydraulic fracture geometry and on productivity from the unconventional reservoirs. The current study is focused on investigating the impact of the NG-based foam of various foam qualities in hydraulic fracture geometries and their production through simulation models. Field data and laboratory-based measurements for NG foam fluid properties are incorporated in the study. In addition, the transient response of the fluid flowback from foam-based fluid is studied using numerical simulation. Comparative analysis is done with typical slickwater, linear gel, and crosslinked fluid application for hydraulic fracturing using 3D-complex hydraulic fracture models. 1D and 2D particle transport models have been used to verify the differences in proppant distribution in the hydraulic fractures. Rapid wellbore clean-up, low formation damage, and effect of the relative permeability improvement are added advantages apart from reducing the water requirements for hydraulic fracturing. In addition to providing the logistical benefit of using wellsite liberated low pressure gas, NG foamed fracturing fluid has a dynamic fluid leak-off behavior and increased effective viscosity over the base fluid that allows pumping and transporting proppant at least 10% farther in the hydraulic fractures than linear gel. Slickwater displays poor proppant transport and hence poses inability to pump higher concentrations of sand. NG foam fracturing fluid on the other hand displays improved proppant transport and has been shown to create more complexity than slickwater in our simulations. Use of NG foamed fracturing fluid has not been practiced widely yet. Application of NG Foaming field test and reaping the economic benefit from simplified logistics and improved production would enables operators to invest in creating a safer handling environment for wellsite application of NG foam.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3