Correlations for Hydrocarbon-Gas Viscosity and Gas Density—Validation and Correlation of Behavior Using a Large-Scale Database

Author:

Londono F. E.1,Archer R. A.2,Blasingame T. A.3

Affiliation:

1. Occidental Petroleum (Colombia)

2. U. of Auckland

3. Texas A&M U.

Abstract

Summary The focus of this work is on the behavior of hydrocarbon-gas viscosity and gas density. The viscosity of hydrocarbon gases is a function of pressure, temperature, density, and molecular weight, while the gas density is a function of pressure, temperature, and molecular weight. This work presents new approaches for the prediction of gas viscosity and gas density for hydrocarbon gases over practical ranges of pressure, temperature, and composition. These correlations can be used for any hydrocarbon-gas production or transportation operations. In this work, we created a large database of measured gas viscosity and gas density. This database was used to evaluate existing models for gas viscosity and gas density. We also provide new models for gas density and gas viscosity, as well as optimization of existing models, using our new database. The objectives of this research are as follows: To create a large-scale database of measured gas-viscosity and gas-density data. This database will contain all the information necessary to establish the applicability of various models for gas density and gas viscosity over a wide range of pressures and temperatures. To evaluate a number of existing models for gas viscosity and gas density. To develop new models for gas viscosity and gas density using our research database; these models are proposed and validated. For this study, we created a large database from existing sources available in the literature. The properties in our database include composition, viscosity, density, temperature, pressure, pseudoreduced properties, and the gas compressibility factor. We use this database to evaluate the applicability of existing models used to determine hydrocarbon-gas viscosity and hydrocarbon-gas density (or, more specifically, the gas z-factor). Finally, we developed new models and calculation approaches to estimate the hydrocarbon-gas viscosity, and we also provide an optimization of the existing equations of state (EOS) typically used for for the calculation of the gas z-factor.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3