Life-Cycle Production Optimization with Nonlinear Constraints Using a Least-Squares Support-Vector Regression Proxy

Author:

Almasov Azad1,Onur Mustafa1

Affiliation:

1. University of Tulsa

Abstract

Abstract In this work, we develop computationally efficient methods for deterministic production optimization under nonlinear constraints using a kernel-based machine learning method where the cost function is the net present value (NPV). We use the least-squares support-vector regression (LSSVR) to maximize the NPV function. To achieve computational efficiency, we generate a set of output values of the NPV and nonlinear constraint functions, which are field liquid production rate (FLPR) and water production rate (FWPR) in this study, by running the high-fidelity simulator for a broad set of input design variables (well controls) and then using the collection of input/output data to train LS-SVR proxy models to replace the high-fidelity simulator to compute NPV and nonlinear constraint functions during iterations of sequential quadratic programming (SQP). To obtain improved (higher) estimated optimal NPV values, we use the existing so-called iterative sampling refinement (ISR) method to update the LSSVR proxy so that the updated proxy remains predictive toward promising regions of search space during the optimization. Direct and indirect ways of constructing LSSVR-based NPVs as well as different combinations of input data, including nonlinear state constraints and/or the bottomhole pressures (BHPs) and water injection rates, are tested as feature space. The results obtained from our proposed LS-SVR-based optimization methods are compared with those obtained from our in-house StoSAG-based line-search SQP programming (LS-SQP-StoSAG) algorithm using directly a high-fidelity simulator to compute the gradients with StoSAG for the Brugge reservoir model. The results show that nonlinear constrained optimization with the LSSVR ISR with SQP is computationally an order of magnitude more efficient than LS-SQP-StoSAG. In addition, the results show that constructing NPV indirectly using the field liquid and water rates for a waterflooding problem where inputs come from LSSVR proxies of the nonlinear state constraints requires significantly fewer training samples than the method constructing NPV directly from the NPVs computed from a high-fidelity simulator. To the best of our knowledge, this is the first study that shows the means of efficient use of a kernel-based machine learning method based on the predictor information alone to perform efficiently life-cycle production optimization with nonlinear state constraints.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3