Effect of Continuous, Trapped, and Flowing Gas on Performance of Alkaline Surfactant Polymer ASP Flooding

Author:

Farajzadeh R..1,Ameri A..2,Faber M. J.1,Van Batenburg D. W.1,Boersma D. M.1,Bruining J..2

Affiliation:

1. 1 Shell Global Solutions International, Rijswijk, The Netherlands

2. 2 Delft University of Technology, The Netherlands

Abstract

Abstract Alkali Surfactant Polymer (ASP) flooding has traditionally been considered in tertiary mode, i.e., after a reservoir has been sufficiently water flooded. In screening studies experiments are usually conducted under two-phase flow conditions, i.e., in the absence of a gas phase in the rock. In practice, oil reservoirs might contain some gas. In areas in the world, where gas flaring is not allowed and an infrastructure for gas transportation is not present, re-injection of produced gas is a common practice. Moreover, when the reservoir is depressurized below bubble point a gas phase will be created. To the best of our knowledge, there are no data in the literature concerning the influence of in-situ gas phase (continuous or trapped) on the performance of ASP floods. The main objective of this paper is to evaluate how the presence of a free (non-dissolved) gas phase affects ASP flood performance. To this end, several experiments were carried out to evaluate different conditions, where free gas was present, either flowing or trapped. We found that the ultimate residual oil saturation in most experiments is similar to the case without gas. When free gas is present in the porous medium, the oil-bank production occurs earlier, because a large fraction of the gas remains trapped and therefore the "effective" pore volume for liquid flow is reduced. When the gas and the ASP solution are co-injected, the oil is mostly produced in emulsion form as gas enhances mixing of the in-situ fluids. Trapped gas could lead to an efficient oil recovery, depending on the amount of trapped gas: the lower the trapped gas saturation the better the oil recovery.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3