Effect of Particle Density and Size on Solids Transport and Hole Cleaning With Coiled Tubing

Author:

Li Jeff1,Wilde Graham2

Affiliation:

1. BJ Services Company

2. BJ Services Co. Canada

Abstract

Abstract Particulate material to be removed from a wellbore can have a vast range in size and density. Typical materials are formation sand, drilling cuttings and various fracture proppants such as resin-coated sands, ceramics, Bauxite and ultra light-weight materials. The characteristic size, shape and density of the particles greatly influence their dynamic behavior in flowing media. Terminal velocity, drag and gravity forces and shear stresses are affected by particle properties and the rheology of the circulation fluid. This paper presents the results of a solids transport study on four different density proppants with same particle size (20/40 mesh) and three different diameter particles ranging from 0.15 to 7 mm. The specific gravity of the proppants varied from 1.25 to 3.6. The tests were performed using a sophisticated flow loop. Findings indicate that particle density and size have a significant effect on the solids transport. For a given flow rate, higher density solids result in higher in-situ solids concentrations and lower wiper trip speed (the wiper trip speed is the coiled tubing pull-out-of-hole (POOH) speed) and reduced transport efficiency. The solids transport for different particle sizes is strongly influenced by wellbore deviation angle. In a near-vertical wellbore larger particles have the lower transport efficiency while in a horizontal wellbore the medium sized particles have the lowest transport efficiency. New correlations have been developed from the experimental data to predict solids in-situ concentration, solids carrying capacity and optimum wiper trip speed for these tested solids under a given operating condition. Introduction Drilling or wellbore cleanouts using coiled tubing (CT) techniques are prone to quality failures due to a lack of knowledge about solids transport. Poor solids transport can negatively impact the rate of penetration (ROP) when drilling a well. A well's production may be reduced due to blocked perforations or flow restriction if a cleanout does not remove all the solids. However, CT can be a very cost effective technology when the overall process is well designed and executed.Highly deviated and horizontal wells have placed a premium on having a reliable body of knowledge about solids transport in single and multi-phase conditions. In a typical solids cleanout the CT tags the top of the fill, and is run into the hole to atarget depth while jetting into the solids (penetration stage). The hole can then be cleaned either by circulating a fluid while keeping the CT stationary (circulation stage) or by pulling the CT out of the wellbore with continuous circulation (wiper trip stage), or by a combination of these stages. Solids or particle transport in coiled tubing operations is a complex problem that is affected by numerous parameters. Predicting effective solids transport requires all of these parameters to be considered simultaneously. In our previous study[1–5] comprehensive tests were conducted to evaluate solids transport with single-phase and two-phase fluids. The effect of liquid/gas volume flow rate ratio, in-situ liquid velocity, ROP, inclination angle and circulation fluid properties on solids transport was investigated. A computer program was developed based on the test results[4]. In this study the effect of particle size and particle density are investigated to gain a more in-depth understanding of solids transport for coiled tubing workovers, cleanouts and drilling applications. Tests were conducted with four proppants of varying density and the same particle size (20/40 mesh) and three particle types with different diameters. The empirical results were incorporated into a solids transport simulator which provides a practical means to evaluate solids transport under downhole conditions.

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3