Analysis and Prediction of Minimum Flow Rate for the Continuous Removal of Liquids from Gas Wells

Author:

Turner R.G.1,Hubbard M.G.2,Dukler A.E.2

Affiliation:

1. Baker Oil Tools, Inc.

2. U. of Houston

Abstract

From an analysis of two models—in one, the movement observed is of a liquid film on the wall of a tubular conduit where the liquid is moved upward by interfacial shear, and in the other it is of the entrained liquid drops in a vertically upward flowing gas stream—it is evident that the minimum condition required to unload a gas well is that which will move the largest liquid drops that can exist in a gas stream. Introduction Gas phase hydrocarbons produced from underground reservoirs will, in many instances, have liquid phase material associated with them, the presence of which can affect the flowing characteristics of the well. Liquids can come from condensation of hydrocarbon gas (condensate) or from interstitial water in the reservoir matrix. In either case, the higher density liquid phase, being essentially discontinuous, must be transported to the surface by the gas. In the event the gas phase does not provide sufficient transport energy to lift the liquids out of the well, the liquids will accumulate in the wellbore. The accumulation of the liquid will impose an additional back pressure on the formation that can significantly affect the production capacity of the well. In low pressure wells the liquid may completely kill the well; and in the higher pressure wells there can occur a variable degree of slugging or churning of the liquids, which can affect calculations used in routine well tests. Specifically, the calculated bottom-hole pressures used in multirate backpressure tests will be erroneous if the well is not removing liquids on a continuous basis, and gas: liquid ratios observed during such a test may not be correct. Several authors1,3,8,14 have suggested methods to determine if the flow rate of a well is sufficient to remove liquid phase material. Vitter14 and Duggan1 proposed that wellhead velocities observed in the field would be adequate for keeping wells unloaded. Jones8 and Dukler3 presented analytical treatments resulting in equations for calculating, from physical properties, the minimum necessary flow rate. An analysis of these studies indicates the existence of two proposed physical models for the removal of gas well liquids:liquid film movement along the walls of the pipe andliquid droplets entrained in the high velocity gas core. Although there probably is a continuous exchange of liquid between the gas core and the film, they will be treated separately for the purposes of this study. The development and comparison of these separate models with experimental data will permit the determination of which, if either, is the controlling mechanism for the removal of liquids from gas wells. The Continuous Film Model Liquid phase accumulation on the walls of a conduit during two-phase gas/liquid flow is inevitable due to the impingement of entrained liquid drops and the condensation of vapor. The movement of the liquid on the wall is therefore of interest in the analysis of liquid removal from gas wells. If the annular liquid film must be moved upward along the walls in order to keep a gas well from loading up, then the minimum gas flow rate necessary to accomplish this is of primary interest. The analysis technique used follows Dukler2 and Hewitt5 and involves describing the profile of the velocity of a liquid film moving upward on the inside of a tube. The minimum rate of gas flow required to move the film upward is then calculated.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

Cited by 302 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3