From Nano-Pores to Wellbores and Back: Scale-Dependent Fluid Flow and Storage Systems in Unconventional Reservoirs

Author:

Reichhardt David1,Hoffman B. Todd1

Affiliation:

1. Montana Tech

Abstract

Abstract Pore-scale dependent phase behavior describes a decrease in the hydrocarbon phase envelope as pore throat size decreases. This phenomenon is well documented in terms of confining effects on phase behavior with several analytical fluid models proposed that account for these effects. Results from a limited number of numerical reservoir models show the effects pore-scale phase behavior has on total production. However, fewer studies consider fluid transfer between different scale pore networks as a function of scale-dependent phase behavior. This work investigates fluid transfer between different scale pore networks related to scale-dependent phase behavior and the affects it has on production and fluid composition in the pore networks. A commercially available reservoir simulator is used with a dual porosity/permeability grid and scale-dependent fluid models to study the fluid transfer between pore networks. Fluid tracking is used to trace fluid phases and components that originate in both the nanoscale and macroscale pore networks. Fluid transfer between pore networks is considered at both the pore network scale and at the well stream scale by tracking the fluid components from nano-scale pores into macro-scale pores and ultimately to the well bore. The results from the model are used to quantify fluid transfer between pore networks. The results of the study show how the confining effects on fluid phase behavior affect fluid production rates and gas-oil ratios by linking the pore scale processes to the well stream scale production. For example, as fluid moves from the nanoscale pores, where the bubble point is suppressed and the fluid retains the initial solution gas-oil ratio (Rs), into the macro scale pores, the fluid in the macroscale pores is enriched by the nanoscale pore fluid. This work provides three main contributions to an improved understanding and characterization of unconventional plays. The first is demonstrating the ability to simulate the confining effects on fluid phase behavior using commercially available reservoir simulators. Second is the ability to capture some of the unique production trends observed for tight oil reservoirs, e.g., extended periods of stable GOR, when modeling these reservoirs. The third contribution is in tight oil EOR, providing insight into the composition of the fluid that remains in the pore networks following primary depletion or at the onset of an EOR process.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3