Assessing the Water Uptake of Alberta Coal and the Impact of CO2 Injection with Low-Field NMR

Author:

Guo R.1,Kantzas A.1

Affiliation:

1. University of Calgary, Tomographic Imaging & Porous Media (TIPM) Laboratory

Abstract

Abstract Coal property characterization is an essential step to develop coalbed methane (CBM) recovery processes. In most cases, coal contains free water in the cleats (except dry coal), as well as moisture that forms an integral part of the coal structure. Most CBM production starts with dewatering coalbeds to initialize the gas recovery. Therefore, the wetting behaviour of coal by water is an important aspect in coal property studies. As CO2 has a strong affinity to coal, CO2 injection may change the coal wetting behaviour during a so-called enhanced coalbed methane process (ECBM). Studies on coal wettability are rare. This paper investigates the water uptake by Alberta coal and its wettability alteration due to CO2 injection using low-field nuclear magnetic resonance (NMR). Low-field NMR is a technique used in logging and in the analysis of fluids contained in reservoir rocks. It measures the hydrogen density in reservoir fluids and distinguishes between 'free' bulk water and 'bound' surface water. CO2 is invisible to NMR, but its impact can be detected by changes in the water signal. Experiments on coal samples in the form of dry and moist powder and chunk are used. The water uptake rate can be shown by monitoring the geometrical mean transverse relaxation time. From the spectra of different coal samples, water can be characterized into free, capillary-bound and subsurface-bound (adsorbed) water. These forms of water have different uptake behaviour inside coal. The injection of CO2 will cause coal dewatering, and the effect will increase with elevated CO2 pressure. Introduction Coalbed methane (CBM) has evolved into a commercially profitable source of unconventional natural gas. Canada has vast resources of coal and it has been estimated that the total in-place reserves are 36 ? 1012 m3. Over 60% of Canada's CBM resource is in Alberta(1). Coalbed methane has the potential of contributing a significant portion of Canadian natural gas production in the foreseen future. Using CO2 to enhance methane recovery has been discussed by several researchers(2, 3). This process is called CO2-ECBM. If successful, its implications include CO2 sequestration in deep unmineable coalbeds. Coal property characterization is an essential step to develop CBM/ECBM recovery processes. In most cases, coal is wet and contains free water in the cleats, as well as moisture that forms an integral part of the coal structure. Some coals found in the Western Canadian Sedimentary Basin's Horseshoe Canyon Formation are dry coals, which means the coal cleats no longer preserve free water. Most CBM production starts with dewatering coalbeds to initialize gas recovery. Therefore, the wetting behaviour of coal by water is an important aspect in coal property studies. As CO2 has a strong affinity to coal, CO2 injection may change the coal wetting behaviour in the ECBM process. Published studies on coal wettability are very rare to the best of our knowledge. Low-field NMR is a relatively new technique used in logging and in the analysis of fluids contained in reservoir rocks.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3