A Unified Model for Predicting Flowing Temperature Distribution in Wellbores and Pipelines

Author:

Alves I.N.1,Alhanati F.J.S.1,Shoham Ovadia1

Affiliation:

1. U. of Tulsa

Abstract

Summary This paper presents a general and unified equation for flowing temperature prediction that is applicable for the entire range of inclination angles. The equation degenerates into Ramey's equations for ideal gas or incompressible liquid and into the Coulter and Bardon equation, with the appropriate assumptions. This work also proposes an approximate method for calculating the Joule-Thomson coefficient for black-oil models. Introduction Flowing temperature distribution often is predicted with different methods for pipelines and wellbores. The Ramey method usually is used for predicting wellbore temperature distribution. This method rigorously incorporates the complex process of transient heat transfer between the wellbore and the reservoir. Ramey's method, however, is limited to either ideal gas or incompressible liquid flow. The Coulter and Bardon equation commonly is used for pipeline temperature prediction. A more rigorous thermodynamic behavior of the flowing fluid is taken into account, incorporating the Joule-Thomson coefficient. Although the Coulter and Bardon equation originally was derived for gas flow, it also is used for single-phase liquid or two-phase flow. This equation is limited, however, by the assumptions of steady-state heat transfer with a constant-temperature environment and horizontal flow.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3