Understanding Stress Dependant Permeability of Matrix, Natural Fractures, and Hydraulic Fractures in Carbonate Formations

Author:

Abass H.H.1,Ortiz I.1,Khan M.R.1,Beresky J.K.1,Sierra L.2

Affiliation:

1. Saudi Aramco

2. Halliburton

Abstract

Abstract Most carbonate reservoirs behave as dual porosity- permeability systems in which the rock matrix and both natural and created hydraulic fractures contribute to the hydrocarbon transport in a very complex manner. Understanding the behavior of the permeability of the matrix frame, natural fractures, and created hydraulic fractures, as a function of reservoir depletion, is vital to designing optimum stimulation treatments and to maximize the carbonate formation's exploitation. Core samples were selected from a carbonate reservoir and a testing procedure was applied to determine the stress dependant permeability as a function of various combinations of effective stresses. A tensile natural fracture was simulated by splitting a whole core by failing it under tension using a Brazilian test procedure. The stress dependant permeability was evaluated under varied effective stresses simulating a reservoir depletion scenario. A shear fractured core was selected from a given carbonate formation and a stress dependant permeability was established. The tensile fractured core was then propped with a low concentration of small mesh proppants and the permeability of the simulated propped fracture was determined. Using a new reservoir simulator the testing results and selective functions were used to predict the production performance of a carbonate reservoir under the effect of the stress dependant permeability. The experimental results indicate that the tensile fractures are much less conductive than shear fractures and the shear fractures are less conductive than propped fractures. The concept of effective stress within the rock matrix is totally different than that of natural fractures; therefore, the effective stress function for both matrix and natural fractures should be separately evaluated to obtain representative functions for any simulation study. The tensile fractures lose conductivity at very early stages of reservoir depletion. Recommendations to manage these tensile fractures for optimum hydrocarbon recovery are suggested. Practical outputs of this work are:Understand how natural fractures are controlled to efficiently contribute to well productivity,Quantify the effective stress concept in the matrix and fracture systems,Provide stress-dependant correlations for simulation studies.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3