The reliability problem related to directional survey data

Author:

Ekseth Roger1,Torkildsen Torgeir2,Brooks Andrew G.3,Weston John Lionel1,Nyrnes Erik2,Wilson Henry Ferguson3,Kovalenko Kazimir1

Affiliation:

1. Gyrodata Inc.

2. Statoil

3. INTEQ

Abstract

Abstract The validity of error model predictions of wellbore position accuracy is highly dependent on the application of rigorous quality control procedures to the survey data. Concern has been expressed within the SPE Wellbore Positioning Technical Section (WPTS, formerly ISCWSA) that failure to apply the necessary operational procedures may be commonplace, raising questions about the reliability of the survey data so generated. Directional survey data that does not conform to its model's predictions represents a risk in terms of lost production, damage to infrastructure and loss of life. This paper lists all sources of error, describes internal data checks that are capable of identifying many of them, and highlights those that are missed and which will therefore require alternative QC measures. Real wellbore survey data are used to illustrate how the use of inadequate QC procedures can lead to invalid survey data being accepted as valid. The paper is the product of collaborative work within the SPE WPTS. Introduction Like all measurements, downhole directional surveys are subject to error. Downhole surveys are carried out remotely, without the closure and correction normally associated with survey measurements on surface, and the resulting errors can be significant with respect to the positional objectives for a well. Planners therefore require an estimate of the position uncertainty associated with any proposed survey programme. Such estimates are provided by survey tool error models, also known as instrument performance models. Position uncertainty estimates are used to determine if there is an adequate probability of hitting the geological target, of avoiding collision with offset wells, and of drilling a successful relief well in the event of a blow out. These are high value decisions and they depend heavily on the validity of the uncertainty estimates. The WPTS has made substantial efforts to improve and standardise survey tool error modelling. Models have been published that accommodate nearly every type of survey tool, their response to varying environmental effects and the application of advanced correction techniques1, 2. However, error models are based on many assumptions about tool quality, operating procedures and environmental conditions. If the actual survey data are not acquired in conformance with the model's assumptions, the uncertainty estimate is invalid and it can no longer be assumed that the directional objectives for a well are being met. It is therefore necessary to ensure, to the greatest possible extent, that the survey data are reliable. It is apparent to those working in the wellbore positioning discipline that the degree to which surveys are validated against their model varies greatly and that the critical importance of this activity is not widely understood. In fact there is concern that the recent provision of a "better" error model might have exacerbated the situation, since the apparent logic of some users is that the quality of the error model determines the quality of the survey data3. It is now realised that the provision of an advanced error model without an accompanying set of validating QC measures represents a dangerously incomplete solution. A comprehensive set of QC measures, derived from the model, is required. Various methods of QC are possible. Downhole survey tools measure their attitude with respect to the Earth's gravity field and its magnetic or spin field. A survey tool's error model predicts how well the measured field values should agree with the theoretical fields. Compliance of the survey data with these criteria indicate compliance with the inclination and azimuth accuracy assumptions of the model. When applied to individual stations this method is very cost effective, since it requires no significant additional data acquisition time and no additional processing effort. However, the reliability of this test is very dependent on the wellbore and tool attitudes. This limitation can to some degree be overcome with multi-station analysis of reference field measurements, but these techniques normally require specialist supervision and therefore incur some additional cost.

Publisher

SPE

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3