Experimental Study of Heavy Oil Recovery Mechanisms during Cyclic Solvent Injection Processes

Author:

Plata Maria1,Bryan Jonathan2,Kantzas Apostolos2

Affiliation:

1. University of Calgary

2. University of Calgary and PERM Inc.

Abstract

Summary The cyclic solvent injection (CSI) process has recently shown to be a promising method for enhanced heavy oil recovery in Canada. Laboratory testing is often run before development of field pilots to assess the effect of parameters, such as solvent choice and process conditions, on the CSI response. However, differences between laboratory results vs. field applications have been observed. CSI laboratory studies work for only two to three cycles due to low incremental oil in subsequent cycles, whereas field pilots continue for years over multiple cycles. This experimental study is intended to capture the production mechanisms responsible for heavy oil production in CSI. Primary production and CSI tests were conducted using sandpack models saturated with live heavy oil of 9530 mPa·s viscosity. The experiments were conducted in horizontal and vertical mode injection at high- and low-pressure depletion rates using two solvent mixtures of CH4 and C3H8. The sandpacks were scanned after every cycle to analyze the evolution of gas and oil saturations using computed tomography (CT). Three cores were used to study the effect of several parameters: gravity forces, pressure depletion rate, solvent composition, and initial oil saturation on the performance of CSI processes. CSI cycles run after primary production in horizontal systems produced negligible incremental oil for both slow and fast drawdown rates due to the large void space and high free gas saturation inhibiting the pressure buildup to push the solvent-diluted oil. These CSI experiments were only initially successful in dead oil systems, in which the initial oil saturation was higher and appropriate pressure gradient was generated through fast depletion rates. During the vertical alignment, CSI cycles exhibited higher incremental oil recovery per cycle. Slow depletion cycles were more efficient in terms of pressure and incremental recovery per cycle; however, faster depletion cycles performed better as a function of time. These results are more in line with the repeated recoveries measured over multiple cycles in field CSI pilot studies. More volume of diluted oil was drained out of the core when the solvent mixture with higher propane (C3H8) content was injected. These results demonstrate the importance of gravity drainage in the CSI process and its significance on successful oil recovery rates. This study illustrates the limitations of previous horizontal laboratory tests and shows an improved test configuration for modeling and prediction of the improved response observed in CSI pilots.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3