Laplace-Transform Finite-Difference and Quasistationary Solution Method for Water-Injection/Falloff Tests

Author:

Habte Azeb D.1,Onur Mustafa1

Affiliation:

1. Universiti Teknologi PETRONAS

Abstract

Summary In this work, we present a method for efficiently and accurately simulating the pressure-transient behavior of oil/water flow associated with water-injection/falloff tests. The method uses the Laplace-transform finite-difference (LTFD) method coupled with the well-known Buckley-Leverett frontal-advance formula to solve the radial diffusivity equation describing slightly compressible oil/water two-phase flow. The method is semianalytical in time, and as a result, the issue of time discretization in the finite-difference approximation method is eliminated. Thus, stability and convergence problems caused by time discretization are avoided. Two approaches are presented and compared in terms of accuracy for simulating the tests with multiple-rate injection and falloff periods: One is based on solving the initial-boundary-value (IVB) problem with the initial condition attained from the end of the previous flow period, and the other is based on the conventional superposition on the basis of the single-phase flow of a slightly compressible fluid. The former is shown to always provide a more accurate and efficient solution. The method is quite general in that it allows one to incorporate the effect of wellbore storage and thick-skin and finite outer-boundary conditions. The accuracy of the method was evaluated by considering various synthetic test cases with favorable and unfavorable mobility ratios and by comparing the pressure and pressure-derivative signatures with a commercial black-oil simulator, and an excellent agreement was seen.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3