Fluid-Diversion Monitoring: The Key to Treatment Optimization

Author:

Glasbergen Gerard1,Yeager Valerie1,Reyes Robert1,Everett Don2

Affiliation:

1. Halliburton

2. Oxy Permian Ltd.

Abstract

Summary In stimulation and injection treatments for removing or preventing formation damage, placement of the injected fluids is essential. Throughout the years, several diversion and placement techniques have been applied to obtain a desired fluid placement. A recent development is the application of distributed temperature sensing (DTS) to monitor the temperature profiles along the wellbore in real time during these treatments. Recent case histories showed that fluid placement can be quantified. Quantification of fluid distribution enables one to determine the flow distribution both before and after a diverter stage so that the diversion effect can be quantified. This paper discusses several case histories where DTS was applied to quantify the effectiveness of different diverters. The effects of chemical diverters, such as relative permeability modifiers (RPMs) and in-situ-crosslinked acids (ICAs), and more-traditional diverters, such as rock salt, are discussed. Because of the advanced monitoring used with the temperature profiles, both the immediate and the sustained effect of the diverters can be measured. The changes in the flow distribution are not limited to diverters. Reactive fluid or changes in flow rate can change the flow distribution as well. These effects were measured during the stimulation treatments. The post-treatment analysis of the measured temperature profiles in combination with treatment pressures and flow-rate information resulted in accurate knowledge of the effectiveness of the different diverters and stimulation effects over time. This knowledge will be used in future treatments to help optimize volumes, rates, fluid systems, and the selection of the appropriate diverter.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3